The index theorem by Atiyah and Singer
Prof. Bernd Ammann, Zimmer 119
Content of the lecture
Let M be a compact connected smooth manifold without boundary.
One of the guiding questions of the lecture
is whether there is a Riemannian metric g on M,
such that g has everywhere positive scalar curvature. We will shortly call such a metric a psc (positive scalar curvature) metric.
The question actually splitts into two parts:
1.) Obstructions against psc metrics, in other words: reasons why such metrics cannot exist
2.) Constructions of psc metrics on large classes of manifolds
A large part of the lecture will study the first part: The Atiyah-Singer index
theorem is the most important obstruction against psc metrics. The theorem
has attracted a lot of interest within mathematics, because it has connected
many fields in mathematics: geometry, topology, and partial differential
equations. It also established many links to applications in
mathematical physics.
For example it provides important tools for a better understanding of scalar
curvature in general relativity, leading e.g. to Witten's proof of the positive mass theorem of an asymptotically Euclidean spacetime
(e.g. a star or a black hole).
The index theorem has attracted many important prizes, e.g.
the Fields Medal for Atiyah in
1966 and the Abel prize for Atiyah and Singer in 2004.
The Atiyah-Singer index theorem states that the Fredholm index of an elliptic
partial differential operator D on M is equal to a characteristic class
of the tangent bundle of M, integrated over M.
In the classical case, D is the Dirac operator
and if M carries a psc metric, then this Fredholm index is 0. On the other
hand, characteristic classes are easy to calculate, they
do not depend on the choice of a Riemannian metric, and often we see that
they are not zero. As a consequence we get manifolds that do not
carry a psc metric.
The Atiyah-Singer theorem also applies to other types of elliptic operators.
One special case is the Gaus-Bonnet-Chern operator which yields
a higher-dimensional version of the Gauss-Bonnet formula, and in another
version we obtain as an index the signature that some people in the audience
might have seen in a topology course.
We want to follow the heat-kernel method to prove the index theorem.
This approach is considerably simpler that the original approach by Atiyah
and Singer, and allows us to understand the proof in many details.
If time permits we will then study the second part of the question
and we will use surgery methods to construct many metrics of positive scalar
curvature.
A good a impression about the course can be obtained from the book(s)
by Roe or the lecture notes cited below.
Recommeded previous knowledge
The most important knowledge is to have a profound understanding
of the curvature of riemannian manifolds as e.g. taught in my lecture
"Differentialgeometrie I" in the last winter term. We also need several
concepts from a course such as "Differentialgeometrie II" such as Lie groups,
vector bundles together with connections, but this can be recaptured easily
if not present.
Literature
Books
- John Roe: Elliptic operators, topology and asymptotic methods, first edition, Pitman Research Notes in Mathematics Series 179, Longman Scientific and Technical, MathSciNet link.
- John Roe: Elliptic operators, topology and asymptotic methods, second edition, CRC Research Notes in Mathematics 395, Chapman and Hall, MathSciNet link.
- Lawson, Michelsohn: Spin Geometry; Princeton Math. Series, 38. Princeton University Press,
MathSciNet link
- Berline, Getzler, Vergne: Heat kernels and Dirac operators, Springer Verlag
- O. Hijazi: Spectral properties of the Dirac operator and Geometrical
structures, Geometric methods for quantum field theory (Villa de Leyva, 1999),
116–169, World Scientific, 2001,
MathSciNet link.
- T. Friedrich: Dirac-Operatoren in der Riemannschen Geometrie, Vieweg,
MathSciNet link.
- J.-P. Bourguignon, O. Hijazi, J.-L. Milhorat, A. Moroianu, S.Moroianu,
A spinorial approach to Riemannian and conformal geometry,
EMS Monographs in Mathematics, 2015,
MathSciNet-Link.
Available as E-Book of our library.
- P. Gilkey: Invariance Theory, the heat equation and the
Atiyah-Singer index theorem
MathSciNet link to the second edition and MathSciNet link to the first edition
Lecture notes (Diverse Vorlesungsskripte)
Place and Time
Tuesday and Thursday 8-10, M104
Exercises
Monday, 16-18, M101, Olaf Müller
Exercise Sheets
(some links are not active yet)
- Sheet 1, tex-Code
- Sheet 2, tex-Code
- Sheet 3, tex-Code
- Sheet 4, tex-Code
- Sheet 5, tex-Code
- Sheet 6, tex-Code
- Sheet 7, tex-Code
- Sheet 8, tex-Code
- Sheet 9, tex-Code
- Sheet 10, tex-Code
- Sheet 11, tex-Code
- Sheet 12, tex-Code
All Exercise sheets in one file
Recommended Links
Kriterien für benotete Leistungsnachweise
Um die üblichen Leistungsnachweise zu erhalten, sind folgende
Kriterien zu erfüllen:
- Regelmäßige Abgabe von Lösungen der Hausaufgaben.
Man muss mindestens 50 Prozent der Punkte erhalten, die man bei
korrekter Bearbeitung aller Aufgaben (ohne Zusatz-Aufgaben) erhalten kann.
Jeder Student muss jede abgegebene Hausaufgabe persönlich an der Tafel
vorrechnen können, um zu gewährleisten, dass er die Aufgaben selbst
verfasst hat.
- Die Bearbeitung der Hausaufgaben muss regelmäßig erfolgen. Ein
hinreichendes Kriterium ist hierbei: mindestens 25 Prozent der Punkte
der letzten 3 Hausaufgabenblätter sollten erreicht werden.
- Regelmäßige und aktive Teilnahme in den Übungsgruppen.
Hierzu gehört das erfolgreiche Vorrechnen von Übungsaufgaben
(mind. einmmal).
- Grundlage der Note ist die mündliche
Abschlussprüfung (30 Minuten).
Unbenotete Leistungsnachweise
Mündliche Prüfung (15 Minuten) nach Zulassung wie oben.
Related web sites
Bernd Ammann, 29.11.2016 oder später