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I. Spinors

I.1. Spinors on semi-Riemannian manifolds
Let (M,g) be a time- and space-oriented semi-Riemannian manifold of
signature `.
We assume that we have a fixed spin structure, i.e. a choice of a
complex vector bundle ΣgM, called the spinor bundle, with

ΣgM ⊗C ΣgM =⋀
●/even T ∗M ⊗R C.

This bundle carries (fiberwise over p ∈ M)
▸ a non-degenerate hermitian product ⟨ ● , ● ⟩ (positive definite in the

Riemannian case)
▸ a compatible connection
▸ a compatible Clifford multiplication cl ∶ TM ⊗ΣgM → ΣgM,

cl(X ⊗ ϕ) =∶ X ●ϕ such that

X ● Y ●ϕ +Y ● X ●ϕ + 2g(X ,Y )ϕ = 0.

⟨X ●ϕ,ψ⟩ = (−1)`+1
⟨ϕ,X ●ψ⟩.



I.2 Associated vector fields

⟨X ●ϕ,ψ⟩ = (−1)`+1
⟨ϕ,X ●ψ⟩.

Associated vector field: Quadratic map ΣgM → TM, ϕ↦ Vϕ

For all X ∈ TM we have:

Riemannian ` = 0: g(Vϕ,X) = −i⟨X ●ϕ,ϕ⟩,
Lorentzian ` = 1: g(Vϕ,X) = −⟨X ●ϕ,ϕ⟩

In the Lorentzian case
▸ Vϕ is causal and future oriented,
▸ Vϕ = 0 ⇔ ϕ = 0,
▸ g(Vϕ,Vϕ) = 0 ⇔ ⟨ϕ,ϕ⟩ = 0,



I.3. Parallel spinors
Let (M,g) be a Riemannian or Lorentzian spin manifold.
Assume that ϕ ≠ 0 is a parallel spinor,
⇒ RX ,Yϕ = 0

⇒ 0 = ∑±ei ● Rei ,Yϕ
!
= 1

2 Ric(Y ) ●ϕ
⇒ g(Ric(Y ),Ric(Y ))ϕ = −Ric(Y ) ● Ric(Y ) ●ϕ = 0
In the Riemannian case: Ric = 0
In the Lorentzian case:

Ric(Y ) is lightlike for all Y
⇒ Ric = fα⊗ α for a lightlike 1-form α.

Remarks
(1) A product M1 ×⋯ ×Mk of (semi-)Riemannian spin manifolds

carries a parallel spinor if and only if each factor carries a parallel
spinor.

(2) Compared to the Lorentzian case, Riemannian manifolds with
parallel spinors are reasonably well understood (special
holonomy, non-trivial parallel forms, topological obstructions on
closed manifolds)



I.4. Goals and Motivation

Goal: Better understanding of Lorentzian manifolds with parallel
spinors

Motivations
▸ Parallel spinors are “odd supersymmetries”
▸ Special holonomy
▸ Equality case in index-theoretical arguments for Dirac–Witten

operators
(Similar role of parallel spinors and Ricci-flat metrics when
studying closed Riemannian manifolds with scal ≥ 0.)



I.5. Associated vector fields of parallel spinors

Notation
Let (M, ḡ) be a connected (glob. hyp.) Lorentzian spin manifold with
spinor bundle ΣM, dim M = n + 1.

Let 0 /≡ ϕ ∈ Γ(ΣM) be parallel.
⇒ Vϕ /≡ 0 is also parallel.
⇒ V ⊥ϕ is a parallel collection of hyperplanes of T M, i.e. a parallel
distribution.

This integrates to a foliation by hypersurfaces, i.e. for any x ∈ M there
is an injectively immersed hypersurface ιx ∶ Fx ↪M (Fx ≙ ιx(Fx)) as
follows:
▸ x ∈ Fx

▸ TxFx = (Vϕ|x)
⊥



Timelike associated vector field
Let us assume that Vϕ is timelike.
Then–at least locally–

(M, ḡ) ≅ ((a,b) ×Fx ,−dt2
+ gFx ).

Then (Fx ,gFx ) is spacelike and has a parallel spinor.
This case reduces to the Riemannian case.
↝ “reasonably well understood”, not the topic of this talk.



Lightlike associated vector field
From now on consider: V = Vϕ is lightlike. ↝ tangent to Fx .
We assume that the flow ΦV

t ∈ Diff(Fx) of V exists for all times t ∈ R,
and this defines an R-action on Fx .
The flow ΦV

t acts by isometries.
Define the (n − 1)-dimensional Riemannian manifold

Q̂x ∶= Fx/y∼ϕV
t (y)

, hx ∶= submersion metric.

The parallel spinor on (M, ḡ) yields a parallel spinor on each (Q̂x ,hx).



II. The Lorentzian–Riemannian correspondence
Thus one may expects

⎧⎪⎪⎪⎪⎪⎪
⎨
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(glob. hyp.) connected
(n + 1)-dimensional
Lorentzian manifolds M
with par. lightl. spinor

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

1∶1↝↝

⎧⎪⎪⎪⎪⎪⎪
⎨
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1-parameter families
(n − 1)-dimensional
Riemannian manifolds Q̂x
with a parallel spinor

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

This can be partially proven and is one of our goals.

R∥(Q) ∶= {Riem. metrics with a non-triv. par. spinor},
Mod∥(Q) ∶=R∥(Q)/Diff Id(Q).

Reformulate/sharpen:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Lorentzian manifolds M
n+1

with parallel lightl. spinor
+ extra conditions

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

1∶1↝↝ {Curves inMod∥(Q
n−1
)}



Assumption CompSpaceHyp
(M, ḡ) is a closed connected Lorentzian spin manifold, dim M = n + 1,
▸ carries a parallel spinor ϕ /≡ 0 with a lightlike associated vector

field V = Vϕ

▸ carries a compact spacelike hypersurface Mn (without boundary)
with induced Riemannian metric g and Weingarten map W

such that
1) the flow ΦV

t of V exists for all t ∈ R,
2) the flow lines t ↦ ΦV

t (x) intersect M precisely once.

Consequences/Notation

For x ∈ M define Qx ∶= Fx ∩M ≅ Q̂x .
Qx , x ∈ M, is a foliation of M by hypersurfaces.



III. From Lorentzian manifolds with a parallel spinor to
curves inMod ∥(Q)

↝: Work by H. Baum, T. Leistner, A. Lischewski (2014–19),
reinterpreted.

Let (M, ḡ) be a Lorentzian spin manifold with a parallel spinor ϕ,
with Assumption CompSpaceHyp.

Vϕ∣M = −Uϕ + uϕν

▸ ν is the future unit normal of M,
▸ Uϕ is the associated vector field to ϕ|M on the Riemannian

manifold (M,g)
α ∶= g(Uϕ, ● ) ∈ Ω1(M) is closed and thus locally α = ds.
The foliation {Qx}x∈M is locally given as s = const.
Qx is diffeomorphic to Qy for all x ,y ∈ M, and either all of them are
closed, or all of them are dense.



Theorem (Baum, Leistner, Lischewski 2014)
If we “restrict” ϕ to M, then it satisfies the constraint equations

∇
M
X ϕ =

i
2

W (X) ●ϕ, ∀X ∈ TM,

Uϕ ●ϕ = iuϕϕ,

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(CE)

Theorem (Leistner, Lischewski 2019)
If (g,W , ϕ) is a solutions to (CE) then we have

g =
1
u2
ϕ

ds2
+ hs

where hs is a Ricci-flat metric with parallel spinor on the foliation
{Qx}x∈M .

Thus, this gives a map “↝”.

However, the factor 1
u2
ϕ

ds2 will not be obtained in “ ↝”



Theorem (Leistner, Lischewski 2019)
If (g,W , ϕ) is a solutions to (CE) then we have

g =
1
u2
ϕ

ds2
+ hs

where hs is a structured Ricci-flat metric on the foliation {Qx}x∈M .

Theorem (A.–Kröncke (in progress))
For some fixed x ∈ M, we assume that Q ∶= Qx is closed. Then we can
change the spatial hypersurface M to M0 ⊃ Q, such that close to Q

g = ds2
+ hs.

Already known locally: Schimming/Galaev–Leistner.
Version above: solution of a Hamilton–Jacobi equation.



IV. From curves inMod ∥(Q) to Lorentzian manifolds w.p.s.

IV.1. From (CE) to Lorentzian manifolds w.p.s.
Now we consider ↝.

The following theorem was proven by

▸ H. Baum, T. Leistner, A. Lischewski 2014: real-analytic

▸ A. Lischewski 2015: smooth

▸ J. Seipel 2019: simple proof, following an idea by P. Chrusciel

Theorem
If (M,g) is a Riemannian manifold with a non-trivial solution of

∇
M
X ϕ =

i
2

W (X) ●ϕ, ∀X ∈ TM,

Uϕ ●ϕ = iuϕϕ,

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(CE)

then it extends to a Lorentzian metric on R ×M with a parallel spinor ϕ
with Vϕ lightlike.



IV.2. Ansatz for solving the constraint equations (CE)

M = (a,b) ×Q, g = ds2
+ hs

where Q is a closed spin manifold.
hs ∈R∥(Q) ∶= {Riem. metrics with a non-triv. par. spinor}

Proposition (A.–Kröncke–Müller (2021))
If (hs)a≤s≤b is a divergence-free path of Ricci-flat metrics, then there is
a symmetric W ∈ End(TM) and ϕ ∈ Γ(ΣM), such that (g,W , ϕ) solves
(CE) on M = (a,b) ×Q.
We say that (hs)a≤s≤b is divergence-free if

divhs (
d
ds

hs) = 0.

This means that this path of metrics (hs) is orthogonal to the orbits of
Diff Id(Q).



So – up to the problem that the normalization for uϕ only works
semi-locally – we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
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Lorentz manifolds M
n+1

with par. lightl. spinor
twisted with flat line bdl.
+ extra conditions
+ choice of hyp.surf. M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1∶1↝↝

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
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curves in the moduli space of
Riemannian metrics on Qn−1

with a parallel spinor
+ scaling function s ↦ f (s)
+ closing condition
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⎬
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Handout-Comment: Either remove the green or the blue line, to get a
1-to-1 correspondence.



V. Topological obstructions to solutions of (CE)
V.1. Are there topological obstructions to solutions of (CE)?

Motivation: Solutions of (CE) are the ids-analogue of a Riemannian
parallel spinor.

∃∇ϕ = 0 ⇒ Ric = 0 ⇒ π1(M) virtually abelian of rank ≤ n

Analyzing the parallel spinors on {Qx}x∈M we get:

Theorem (A.–Glöckle (2023))
If M is a closed Riemannian spin manifold manifold with a solution to
(CE), then π1(M) has a subgroup Γ of finite index that fits into the
short exact sequence

{1}→ Zk
→ Γ→ Zm

→ {1},

with k +m ∈ {n,n − 4,n − 6,n − 7,n − 8,n − 10,n − 11,n − 12, . . .}.
(π1(M) is virtually solvable with derived length ≤ 2.)
Further obstructions, e.g. Betti numbers.
If k +m = n, then a finite cover of M is homeomorphic to T n.



V.2. Application of these obstructions

Let M be connected, closed, spin.
An initial data set (ids) on M, is a pair (g,k) of sections of T ∗M⊙T ∗M
such that g is positive definite.

2ρ = scal g
+ (tr k)2 − ∥k∥2

j = divk − d tr k .

ids-DEC holds iff ρ ≥ ∣j ∣.
ids-DEC holds strictly iff ρ ≥ ∣j ∣ and at some x we have ρ(x) > ∣j(x)∣.

If ids-DEC holds strictly, then the Dirac–Witten operator /DW is
invertible ↝ index-theoretical machinery (Jonathan Glöckle).

If ids-DEC holds, then any ϕ ∈ ker /DW is a solution to (CE).



V.3. Application: Example

Theorem (essentially due to J. Glöckle)
Let M be a closed connected spin manifold
(a) with a “good” index theoretic obstruction to positive scalar

curvature,
e.g. KOdimM({●}), enlargeability,...

(b) with no solution of (CE)
Then there is no Lorentzian metric ḡ on M ∶= (a,b) ×M such that
▸ (M, ḡ) is globally hyperbolic with Cauchy hypersurface {t0} ×M,

▸ it evolves from a big bang k(X ,X)
g(X ,X) ≫ 1 to a big crunch k(X ,X)

g(X ,X) ≪ −1,

▸ (M, ḡ) satisfies the strict dominant energy condition (DEC).

The theorem also holds for strict DEC without assumption (b).
For dimM = 3:

Theorem applicable to T 3#T 3, T 3#RP3, hyperbolic pieces,..
Our goal: A Lorentzian metric ḡ exists, if, and only if, M is a
connected sums of S3/Γ and S2 ×S1.
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