Parallel spinors on Riemannian and Lorentzian manifolds

Overview over joint work with Klaus Kröncke, Olaf Müller and Jonathan Glöckle

Bernd Ammann¹

¹Universität Regensburg, Germany

Einstein Spaces and Special Geometry Institut Mittag-Leffler Djursholm, Sweden July 10, 2023

http://www.berndammann.de/talks/ 2023Stockholm-handout.pdf

Outline

I. Spinors

- 1. Spinors on semi-Riemannian manifolds
- 2. Associated vector fields
- 3. Parallel spinors
- 4. Goals and Motivation
- 5. Associated vector fields of parallel spinors
- II. The Lorentzian-Riemannian correspondence
- III. From Lorentzian manifolds with a par. spinor to curves in $\mathcal{M}od_{\parallel}(Q)$
- IV. From curves in $\mathcal{M}od_{\parallel}(Q)$ to Lorentzian manifolds w.p.s.
 - 1. From (CE) to Lorentzian manifolds w.p.s.
 - 2. Ansatz for solving the constraint equations (CE)
- V. Topological obstructions to solutions of (CE)
 - 1. Are there topological obstructions to solutions of (CE)?
 - 2. Application of these obstructions
 - 3. Application: Example

I. Spinors

I.1. Spinors on semi-Riemannian manifolds

Let (M, g) be a time- and space-oriented semi-Riemannian manifold of signature ℓ .

We assume that we have a fixed spin structure, i.e. a choice of a complex vector bundle $\Sigma^{g}M$, called the spinor bundle, with

$$\Sigma^{g} M \otimes_{\mathbb{C}} \Sigma^{g} M = \bigwedge^{\bullet/\text{even}} T^{*} M \otimes_{\mathbb{R}} \mathbb{C}.$$

This bundle carries (fiberwise over $p \in M$)

- a non-degenerate hermitian product $\langle \, \cdot \, , \cdot \, \rangle$ (positive definite in the Riemannian case)
- a compatible connection
- a compatible Clifford multiplication $cl : TM \otimes \Sigma^g M \to \Sigma^g M$, $cl(X \otimes \varphi) =: X \cdot \varphi$ such that

$$X \cdot Y \cdot \varphi + Y \cdot X \cdot \varphi + 2g(X, Y) \varphi = 0.$$

$$\langle X \bullet \varphi, \psi \rangle = (-1)^{\ell+1} \langle \varphi, X \bullet \psi \rangle.$$

I.2 Associated vector fields

$$\langle X \bullet \varphi, \psi \rangle = (-1)^{\ell+1} \langle \varphi, X \bullet \psi \rangle.$$

Associated vector field: Quadratic map $\Sigma^g M \to TM$, $\varphi \mapsto V_{\varphi}$ For all $X \in TM$ we have:

For all $X \in TM$ we have:

Riemannian $\ell = 0$: $g(V_{\varphi}, X) = -i\langle X \cdot \varphi, \varphi \rangle$, Lorentzian $\ell = 1$: $g(V_{\varphi}, X) = -\langle X \cdot \varphi, \varphi \rangle$

In the Lorentzian case

• V_{φ} is causal and future oriented,

$$V_{\varphi} = \mathbf{0} \Leftrightarrow \varphi = \mathbf{0},$$

•
$$g(V_{\varphi}, V_{\varphi}) = 0 \Leftrightarrow \langle \varphi, \varphi \rangle = 0,$$

I.3. Parallel spinors

Let (M, g) be a Riemannian or Lorentzian spin manifold. Assume that $\varphi \neq 0$ is a parallel spinor,

 $\Rightarrow R_{X,Y}\varphi = 0$

$$\Rightarrow \quad 0 = \sum \pm e_i \cdot R_{e_i, Y} \varphi \stackrel{!}{=} \frac{1}{2} \operatorname{Ric}(Y) \cdot \varphi$$

$$\Rightarrow g(\operatorname{Ric}(Y), \operatorname{Ric}(Y))\varphi = -\operatorname{Ric}(Y) \cdot \operatorname{Ric}(Y) \cdot \varphi = 0$$

In the Riemannian case: Ric = 0

In the Lorentzian case:

```
\operatorname{Ric}(Y) is lightlike for all Y
```

 $\Rightarrow \quad \text{Ric} = f\alpha \otimes \alpha \text{ for a lightlike 1-form } \alpha.$

Remarks

- (1) A product $M_1 \times \cdots \times M_k$ of (semi-)Riemannian spin manifolds carries a parallel spinor if and only if each factor carries a parallel spinor.
- (2) Compared to the Lorentzian case, Riemannian manifolds with parallel spinors are reasonably well understood (special holonomy, non-trivial parallel forms, topological obstructions on closed manifolds)

I.4. Goals and Motivation

Goal: Better understanding of Lorentzian manifolds with parallel spinors

Motivations

- Parallel spinors are "odd supersymmetries"
- Special holonomy
- Equality case in index-theoretical arguments for Dirac–Witten operators

(Similar role of parallel spinors and Ricci-flat metrics when studying closed Riemannian manifolds with scal ≥ 0 .)

I.5. Associated vector fields of parallel spinors

Notation

Let $(\overline{M}, \overline{g})$ be a connected (glob. hyp.) Lorentzian spin manifold with spinor bundle $\Sigma \overline{M}$, dim $\overline{M} = n + 1$.

Let $0 \notin \varphi \in \Gamma(\Sigma \overline{M})$ be parallel.

 $\Rightarrow V_{\varphi} \neq 0$ is also parallel.

 $\Rightarrow V_{\varphi}^{\perp}$ is a parallel collection of hyperplanes of $T\overline{M}$, i.e. a parallel distribution.

This integrates to a foliation by hypersurfaces, i.e. for any $x \in \overline{M}$ there is an injectively immersed hypersurface $\iota_x : \mathcal{F}_x \hookrightarrow \overline{M} (\mathcal{F}_x \triangleq \iota_x(\mathcal{F}_x))$ as follows:

• $X \in \mathcal{F}_X$

$$T_{X}\mathcal{F}_{X} = \left(V_{\varphi} |_{X} \right)^{\perp}$$

Timelike associated vector field

Let us assume that V_{φ} is timelike. Then–at least locally–

$$(\overline{M},\overline{g})\cong ((a,b)\times \mathcal{F}_x,-\mathrm{d}t^2+g_x^{\mathcal{F}}).$$

Then $(\mathcal{F}_x, g_x^{\mathcal{F}})$ is spacelike and has a parallel spinor. This case reduces to the **Riemannian** case.

→ "reasonably well understood", not the topic of this talk.

Lightlike associated vector field

From now on consider: $V = V_{\varphi}$ is lightlike. \rightarrow tangent to \mathcal{F}_{x} . We assume that the flow $\Phi_{t}^{V} \in \text{Diff}(\mathcal{F}_{x})$ of *V* exists for all times $t \in \mathbb{R}$, and this defines an \mathbb{R} -action on \mathcal{F}_{x} .

The flow Φ_t^V acts by isometries.

Define the (n-1)-dimensional Riemannian manifold

$$\widehat{Q}_{x} \coloneqq \mathcal{F}_{x} / _{y \sim \varphi_{t}^{V}(y)}, \quad h_{x} \coloneqq \text{submersion metric.}$$

The parallel spinor on $(\overline{M}, \overline{g})$ yields a parallel spinor on each (\widehat{Q}_x, h_x) .

II. The Lorentzian–Riemannian correspondence

Thus one may expects

 $\left\{ \begin{array}{l} (\text{glob. hyp.}) \text{ connected} \\ (n+1)\text{-dimensional} \\ \text{Lorentzian manifolds } \overline{M} \\ \text{with par. lightl. spinor} \end{array} \right\} \xrightarrow{1:1} \left\{ \begin{array}{l} 1\text{-parameter families} \\ (n-1)\text{-dimensional} \\ \text{Riemannian manifolds } \widehat{Q}_x \\ \text{with a parallel spinor} \end{array} \right\}$

This can be partially proven and is one of our goals.

$$\begin{split} \mathcal{R}_{\|}(\mathcal{Q}) \coloneqq \{ \text{Riem. metrics with a non-triv. par. spinor} \}, \\ \mathcal{M} od_{\|}(\mathcal{Q}) \coloneqq \mathcal{R}_{\|}(\mathcal{Q}) / \operatorname{Diff}_{\mathsf{Id}}(\mathcal{Q}). \end{split}$$

Reformulate/sharpen:

 $\left\{ \begin{array}{l} \text{Lorentzian manifolds } \overline{M}^{n+1} \\ \text{with parallel lightl. spinor} \\ + \text{ extra conditions} \end{array} \right\} \stackrel{1:1}{\longleftrightarrow} \left\{ \text{Curves in } \mathcal{M}od_{\parallel}(Q^{n-1}) \right\}$

Assumption CompSpaceHyp

 $(\overline{M}, \overline{g})$ is a closed connected Lorentzian spin manifold, dim $\overline{M} = n + 1$,

- carries a parallel spinor φ ≠ 0 with a lightlike associated vector field V = V_φ
- carries a compact spacelike hypersurface Mⁿ (without boundary) with induced Riemannian metric g and Weingarten map W

such that

- 1) the flow Φ_t^V of V exists for all $t \in \mathbb{R}$,
- 2) the flow lines $t \mapsto \Phi_t^V(x)$ intersect *M* precisely once.

Consequences/Notation

For $x \in M$ define $Q_x \coloneqq \mathcal{F}_x \cap M \cong \widehat{Q}_x$.

 Q_x , $x \in M$, is a foliation of M by hypersurfaces.

III. From Lorentzian manifolds with a parallel spinor to curves in $\mathcal{M}od_{\|}(Q)$

→: Work by H. Baum, T. Leistner, A. Lischewski (2014–19), reinterpreted.

Let $(\overline{M}, \overline{g})$ be a Lorentzian spin manifold with a parallel spinor φ , with Assumption CompSpaceHyp.

$$V_{\varphi}|_{M} = -U_{\varphi} + u_{\varphi}\nu$$

- ν is the future unit normal of *M*,
- ► U_{\varphi} is the associated vector field to \varphi|_M on the Riemannian manifold (M, g)

 $\alpha \coloneqq g(U_{\varphi}, \cdot) \in \Omega^{1}(M)$ is closed and thus locally $\alpha = ds$. The foliation $\{Q_{x}\}_{x \in M}$ is locally given as s = const.

 Q_x is diffeomorphic to Q_y for all $x, y \in M$, and either all of them are closed, or all of them are dense.

Theorem (Baum, Leistner, Lischewski 2014) If we "restrict" φ to *M*, then it satisfies the constraint equations

$$\nabla_{X}^{M} \varphi = \frac{i}{2} W(X) \bullet \varphi, \ \forall X \in TM, \\ U_{\varphi} \bullet \varphi = i u_{\varphi} \varphi,$$
(CE)

Theorem (Leistner, Lischewski 2019) If (g, W, φ) is a solutions to (CE) then we have

$$g=\frac{1}{u_{\varphi}^2}ds^2+h_s$$

where h_s is a Ricci-flat metric with parallel spinor on the foliation $\{Q_x\}_{x \in M}$.

Thus, this gives a map "~>".

However, the factor $\frac{1}{u_{\alpha}^2} ds^2$ will **not** be obtained in " \sim "

Theorem (Leistner, Lischewski 2019) If (g, W, φ) is a solutions to (CE) then we have

$$g = \frac{1}{u_{\varphi}^2} \mathrm{d}s^2 + h_{\mathrm{s}}$$

where h_s is a structured Ricci-flat metric on the foliation $\{Q_x\}_{x \in M}$.

Theorem (A.–Kröncke (in progress))

For some fixed $x \in M$, we assume that $Q \coloneqq Q_x$ is closed. Then we can change the spatial hypersurface M to $M_0 \supset Q$, such that close to Q

$$g = \mathrm{d}s^2 + h_s$$

Already known locally: Schimming/Galaev–Leistner. Version above: solution of a Hamilton–Jacobi equation.

IV. From curves in $\mathcal{M}od_{\parallel}(Q)$ to Lorentzian manifolds w.p.s.

IV.1. From (CE) to Lorentzian manifolds w.p.s. Now we consider ⊷.

The following theorem was proven by

- H. Baum, T. Leistner, A. Lischewski 2014: real-analytic
- A. Lischewski 2015: smooth
- J. Seipel 2019: simple proof, following an idea by P. Chrusciel

Theorem

If (M,g) is a Riemannian manifold with a non-trivial solution of

$$\nabla_{X}^{M} \varphi = \frac{i}{2} W(X) \bullet \varphi, \ \forall X \in TM, \\ U_{\varphi} \bullet \varphi = i u_{\varphi} \varphi,$$
(CE)

then it extends to a Lorentzian metric on $\mathbb{R} \times M$ with a parallel spinor φ with V_{φ} lightlike.

IV.2. Ansatz for solving the constraint equations (CE)

$$M = (a, b) \times Q$$
, $g = ds^2 + h_s$

where Q is a closed spin manifold.

 $h_s \in \mathcal{R}_{\parallel}(Q) \coloneqq \{$ Riem. metrics with a non-triv. par. spinor $\}$

Proposition (A.-Kröncke-Müller (2021))

If $(h_s)_{a \le s \le b}$ is a divergence-free path of Ricci-flat metrics, then there is a symmetric $W \in \text{End}(TM)$ and $\varphi \in \Gamma(\Sigma M)$, such that (g, W, φ) solves (CE) on $M = (a, b) \times Q$.

We say that $(h_s)_{a \le s \le b}$ is divergence-free if

$$\operatorname{div}^{h_{s}}\left(\frac{d}{ds}h_{s}\right)=0.$$

This means that this path of metrics (h_s) is orthogonal to the orbits of $\text{Diff}_{Id}(Q)$.

So – up to the problem that the normalization for u_{φ} only works semi-locally – we have:

$$\left\{\begin{array}{c} \text{Lorentz manifolds } \overline{M}^{n+1} \\ \text{with par. lightl. spinor} \\ \text{twisted with flat line bdl.} \\ + \text{ extra conditions} \\ + \text{ choice of hyp.surf. } M\end{array}\right\} \xrightarrow{1:1} \left\{\begin{array}{c} \text{curves in the moduli space of} \\ \text{Riemannian metrics on } Q^{n-1} \\ \text{with a parallel spinor} \\ + \text{ scaling function } s \mapsto f(s) \\ + \text{ closing condition}\end{array}\right\}$$

Handout-Comment: Either remove the green or the blue line, to get a 1-to-1 correspondence.

V. Topological obstructions to solutions of (CE)

V.1. Are there topological obstructions to solutions of (CE)?

Motivation: Solutions of (CE) are the ids-analogue of a Riemannian parallel spinor.

 $\exists \nabla \varphi = \mathbf{0} \Rightarrow \operatorname{Ric} = \mathbf{0} \Rightarrow \pi_1(M) \text{ virtually abelian of rank} \le n$

Analyzing the parallel spinors on $\{Q_x\}_{x \in M}$ we get:

Theorem (A.–Glöckle (2023))

If M is a closed Riemannian spin manifold manifold with a solution to (CE), then $\pi_1(M)$ has a subgroup Γ of finite index that fits into the short exact sequence

$$\{1\} \to \mathbb{Z}^k \to \Gamma \to \mathbb{Z}^m \to \{1\},\$$

with $k + m \in \{n, n - 4, n - 6, n - 7, n - 8, n - 10, n - 11, n - 12, ...\}$. ($\pi_1(M)$ is virtually solvable with derived length ≤ 2 .) Further obstructions, e.g. Betti numbers. If k + m = n, then a finite cover of M is homeomorphic to T^n .

V.2. Application of these obstructions

Let *M* be connected, closed, spin.

An initial data set (ids) on *M*, is a pair (g, k) of sections of $T^*M \odot T^*M$ such that *g* is positive definite.

$$2\rho = \operatorname{scal}^g + (\operatorname{tr} k)^2 - ||k||^2$$

$$j = \operatorname{div} k - \operatorname{d} \operatorname{tr} k.$$

ids-DEC holds iff $\rho \ge |j|$. ids-DEC holds strictly iff $\rho \ge |j|$ and at some *x* we have $\rho(x) > |j(x)|$. If ids-DEC holds strictly, then the Dirac–Witten operator \mathcal{D}^W is invertible \rightsquigarrow index-theoretical machinery (Jonathan Glöckle). If ids-DEC holds, then any $\varphi \in \ker \mathcal{D}^W$ is a solution to (CE).

V.3. Application: Example

Theorem (essentially due to J. Glöckle)

Let M be a closed connected spin manifold

- (a) with a "good" index theoretic obstruction to positive scalar curvature,
 - e.g. $KO_{\dim M}(\{\cdot\})$, enlargeability,...
- (b) with no solution of (CE)

Then there is **no** Lorentzian metric \overline{g} on $\overline{M} \coloneqq (a, b) \times M$ such that

- $(\overline{M}, \overline{g})$ is globally hyperbolic with Cauchy hypersurface $\{t_0\} \times M$,
- it evolves from a big bang $\frac{k(X,X)}{q(X,X)} \gg 1$ to a big crunch $\frac{k(X,X)}{q(X,X)} \ll -1$,
- $(\overline{M}, \overline{g})$ satisfies the strict dominant energy condition (DEC).

The theorem also holds for strict DEC without assumption (b). For dim M = 3:

Theorem applicable to $T^3 \# T^3$, $T^3 \# \mathbb{R}P^3$, hyperbolic pieces,.. **Our goal:** A Lorentzian metric \overline{g} exists, if, and only if, *M* is a connected sums of S^3/Γ and $S^2 \times S^1$.

