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Weierstraß representation for surfaces in R3

Pythagorean triples

a2 + b2 = c2 a,b, c ∈ Z (∗)

Equivalently: Solve
(

a
c
,
b
c

)
∈
{

v ∈ Q2
∣∣∣ |v | = 1

}

stereogr. proj.←→ rational points on R ∪ {∞}
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(
a
c
,
b
c

)
=

(
2mn

m2 + n2 ,
m2 − n2

m2 + n2

)

(
m
n

)
7→




a = 2mn
b = m2 − n2

c = m2 + n2




Z× Z → Solutions of (*) in Z× Z× Z



Complexification

Quadric Q =








a

b

c


 ∈ C3

∣∣∣a2 + b2 + c2 = 0





(
m

n

)
7→




m2−n2

i(m2+n2)

2mn




C2 2:1−→ Q
↓ ↓

CP1 1:1−→ [Q]



Conformal parametrizations of surfaces

Parametrization of a surface

U ⊂ C open, (x , y) ∈ U.
F : U → R3 parametrization of a piece of a surface
∂F
∂z = 1

2

(
dF
dx − i dF

dy

)

F is conformal (=angle preserving)

⇔
∣∣dF

dx

∣∣ =
∣∣∣dF

dy

∣∣∣ and dF
dx ⊥

dF
dy

⇔ ∂F
∂z ∈ Q



Weierstraß representation (≤1866)

F : U → R3 F conformal.
Find ϕ1, ϕ2 : U → C, such that

∂F
∂z

=




ϕ2
1 − ϕ2

2
i(ϕ2

1 + ϕ2
2)

2ϕ1ϕ2




F (U) is a minimal surface (i.e. mean curvature H = 0)
⇔ ϕ1 and ϕ2 are holomorphic functions.



Why is this important?
The equation H = 0 is a non-linear partial differential equation,
thus a priori hard to solve.

{Solutions of H = 0} ←→

{Pairs (ϕ1, ϕ2) of holomorphic functions}

Holomorphic functions are much easier to study.



Global Description

Under conformal coordinate transformations ϕ1 and ϕ2 behave
the same way as square roots of 1-forms. Thus they are
(half-)spinors.
Now let M be Riemann surface, conformally embedded (or
immersed) into R3.

T ∗M = Σ+M ⊗C Σ+M

Σ−M := Σ+M

ΣM := Σ+M ⊕ Σ−M

ϕ := (ϕ1, ϕ̄2) ∈ Γ(ΣM)

Dirac operator D : Γ(ΣM)→ Γ(ΣM)

D
(
ϕ1
ϕ̄2

)
=

(
0 −∂
∂ 0

)(
ϕ1
ϕ̄2

)
.
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

periodic minimal sufaces
with
fundamental domain M
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

/

Translations

1:1←→

{Pairs of holomorphic sections of Σ+M} / ± 1

1:1←→

{Solutions of Dϕ = 0} / ± 1

https://www.mathematik.tu-darmstadt.de/fb/personal/details/karsten_grosse_brauckmann.de.jsp


What about H 6≡ 0?
Kusner-Schmitt (1993/95/96):





Solutions of
Dϕ = H |ϕ|2ϕ
on M



 /±1

1:1←→



Conformal periodic immersions with
mean curvature function H of M̃ in R3

with branch points of even order




/

Translations



Modern presentations by Bär and Friedrich

Bär: 1997/98 (Special case previously by Trautman)
Assume N carries a parallel spinor ψ, e.g. N = R3,
and that M is a hypersurface in N.
Then ϕ̃ := ψ|M satisfies

∇X ϕ̃ =
1
2

W (X ) · ϕ̃, |ϕ̃| = const
wlog
= 1

for the induced metric g̃ on M.
Thus /Dϕ̃ = Hϕ̃, |ϕ̃| ≡ 1.

Now suppose g̃ = f 4g. /Dg̃
= f−3 /Dg f .

Then ϕ := f ϕ̃ satisfies

/Dg
ϕ = H|ϕ|2ϕ.



Modern presentations by . . . and Friedrich

Friedrich: 1997/98, shortly afterwards
The energy-momentum tensor of ϕ will provide the Weingarten
map W .
g̃ := |ϕ|4g and W satisfy:

a) Gauß equation: det W = K g̃

b) Codazzi equation: (∇X W )(Y ) = (∇Y W )(X )

This allows a compatible immersion into R3.



The case H = const / Non-linear Dirac eigenvalues

Minimizing λ+1 ( /Dg
)vol(M,g)1/n in a conformal class

Let (M,g) be a closed Riemannian manifold, n = dim M.
Let the spectrum of /Dg be

−∞← . . . ≤ λ−1 (g) < 0 = . . . 0︸ ︷︷ ︸
dim ker /Dg times

< λ+1 (g) ≤ . . .→∞

Lemma (Lott 1986, Ammann 2003)

λmin(M, [g]) := inf
g̃∈[g]

λ+1 (g)vol(M,g)1/n > 0



Minimizing λ+1 ( /Dg
)vol(M,g)1/n in a conformal class

λmin(M, [g]) := inf
g̃∈[g]

λ+1 (g)vol(M,g)1/n > 0

Theorem
If λmin(M, [g]) < (n/2)vol(Sn)1/n, then the infimum is attained in
a “generalized” metric.
The proof is similar to the solution of the Yamabe problem.
For q = 2n/(n + 1) one maximizes the functional

ψ 7→ F(ψ) =

∫
M〈 /D

g
ψ,ψ〉 dvolg

‖ /Dg
ψ‖2Lq(M,g)

If ψ maximizes, the infimum is attained in g̃ := | /Dψ|4/(n+1)g.



The case H = const cont’d

In this way one finds a maximizer ψ that satisfies

/Dψ = λmin(M,g)|ψ|2/(n−1)ψ

and for n = 2 this is the Weierstraß representation of a surface
with H ≡ λmin(M,g).

c©Thanks to
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https://www.mathematik.tu-darmstadt.de/fb/personal/details/karsten_grosse_brauckmann.de.jsp


More pictures for H = const

The unduloid – rectangular tori
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Wikipedia

link

We cannot show that this is the minimizer for the torus
(conjecture: it is!), but if it is not, then there are very interesting
other cmc surfaces based on the 2-torus.

https://en.wikipedia.org/wiki/Constant-mean-curvature_surface#/media/File:Unduloid.svg


Non-constant functions H
Suppose (M2,g) is a closed Riemannian surface, H : M → R3.
Is there a conformal map F : M → R3 with mean curvature H?

Theorem (Ammann, Humbert, Ould Ahmedou)
If X is a conformal vector field on S2 and F : S2 → R3 as
above, then ∫

S2
∂X H dvolF

∗geucl = 0.

Consequence: Many functions, e.g. H(x1, x2, x3) = x1, are not
a mean curvature!

Question: Does any mean curvature function on S2 has at
least 3 (or even 4) stationary points?
Four vertex theorem/Vierscheitelsatz: For S1 ↪→ R2 the
function H has at least 4 stationary points.

For special functions existence results by M. Anderson and
Tian Xu



Curvature in higher dimensions

Let M be a Riemannian manifold of arbitrary dimension n ≥ 2.
p ∈ M; Q ⊂ TpM a 2-dimensional subspace.
For any v ∈ Q take a geodesic γv : [0, ε)→ M with γv (0) = p
and γ̇v (0) = v .
The union of such curves is a (2-dimensional) surface SQ in M.

Sectional curvature of M: SecM(Q,p) := K SQ (p) Gauß curvature of SQ

For v ∈ TpM, |v | = 1 we define

RIC(v) := (n − 1) · (average of SecQ over all Q 3 v).

We say (M,g) is an Einstein manifold with Einstein constant λ if

RIC ≡ λ



Higher dimensions: manifolds with parallel spinors

Recall: Bär’s method for the Weierstraß representation
requires a parallel spinor on A Riemannian manifold N
Classical case N = R3.
Manifolds with a parallel spinor are Ricci-flat RIC ≡ 0.
They are structured Ricci-flat.
Thus: If M ↪→ N is a conformal (oriented) embedding of a
hypersurface into such an N, then restriction of this spinor gives
a solution to

Dψ = H|ψ|2/(n−1)ψ on M.

Is there a converse?
For general n ≥ 2 and N = Rn+1 very rarely!



Hypersurfaces in structured Ricci-flat manifolds

B. A.– A. Moroianu – S. Moroianu (2013):
A generalized Killing vector is a spinor solution ψ to

∇Xψ = A(X ) · ψ, ∀X ∈ TM

for some A ∈ End(TM).

Results in general dimensions n ≥ 2
1.) If Mn ⊂ Nn+1 with N structured Ricci-flat, then there is a
generalized Killing spinor on M wrt the induced metric g̃
Bär– “Extrinsic ...” or even Trautman
2.) If there is a generalized Killing spinor on (M, g̃), we can get
a suitable N formally (as a power series).
3.) The power series converges if g̃ and A are real-analytic;
we have examples of non-convergent series with the analyticity
assumption.



3-dim. hypersurfaces in structured Ricci-flat 4-mnfds

There is a converse for n = 3!

Results in dimension n = 3
4.) Let ψ be a solution of

/Dg
ψ = H|ψ|ψ,

then ψ̃ = |ψ|−1ψ is a generalized Killing spinor for g̃ = |ψ|2g.
Thus for any (real-)analytic conformal class on a closed
manifold M3 we get a conformal embedding of constant mean
curvature into a structured Ricci-flat N away from ψ−1(0).
5.) If the conformal class is not analytic, no such embedding
exists.
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