ERRATUM TO EIGENVALUE PINCHING FOR RIEMANNIAN VECTOR BUNDLES

PETER PETERSEN AND CHAD SPROUSE

Lemma 3.1 of [3] is incorrect. The correct statement is the following.

Lemma 0.1. Let u be a function on a compact manifold with $\operatorname{Ric} \geq -k^2$, diam < D such that $\Delta u \leq \alpha u + \beta$. Then there exist $K = K(n, k, D, \alpha, \beta)$ and r, with $e^{-(n-2)\ln(2)/2} < r \leq 1$, such that $||u||_{\infty} \leq (K||u||_2)^r$.

Proof. From [4, eq. (3.8)],

(1)
$$||u||_{\frac{2np}{n-2}}^{2p} \le C_S \frac{p^2}{2p-1} \left(\alpha ||u||_{2p}^{2p} + \beta ||u||_{2p}^{2p-1} \right) + ||u||_{2p}^{2p},$$

Where $C_S = C(n, k, D)$.

Let $p_i = \left(\frac{n}{n-2}\right)^i$. Note that for any $A_i, B_i > 0$ we have that $(A_i + B_i) \min\{\|u\|_{2p_i}^{2p_i}, \|u\|_{2p_i}^{2p_i-1}\} \le A_i \|u\|_{2p_i}^{2p_i} + B_i \|u\|_{2p_i}^{2p_i-1} \le (A_i + B_i) \max\{\|u\|_{2p_i}^{2p_i}, \|u\|_{2p_i}^{2p_i-1}\}$. In particular for for each i we can find r_i such that $2p_i - 1 < r_i < 2p_i$ and

$$\left(\alpha C_S \frac{p_i^2}{2p_i - 1} + 1\right) \|u\|_{2p_i}^{2p_i} + \left(\beta C_S \frac{p_i^2}{2p_i - 1}\right) \|u\|_{2p_i}^{2p_i - 1} = \left((\alpha + \beta)C_S \frac{p_i^2}{2p_i - 1} + 1\right) \|u\|_{2p_i}^{r_i}$$

Therefore,

(3)
$$||u||_{\frac{2np_i}{n-2}} \le \left((\alpha + \beta) C_S \frac{p_i^2}{2p_i - 1} + 1 \right)^{\frac{1}{2p_i}} ||u||_{2p_i}^{\frac{r_i}{2p_i}}$$

Iterating gives

(4)
$$||u||_{\infty} \le \left(\prod_{i=1}^{\infty} \left((\alpha + \beta) C_S \frac{p_i^2}{2p_i - 1} + 1 \right)^{\frac{1}{2p_i}} ||u||_2^{\frac{r_0}{2}} \right)^{\prod_{i=1}^{\infty} (r_i/2p_i)}$$

The first product above is well-known to converge to a finite value. Let $r=\prod_{i=0}^{\infty}(r_i/2p_i)$. Since $r_i\leq 2p_i$ we clearly have $r\leq 1$. To show that r>0, we use that $r_i\geq 2p_i-1$ which gives $r\geq \prod_{i=0}^{\infty}(1-\frac{1}{2p_i})=\prod_{i=0}^{\infty}(1-\frac{1}{2}(\frac{n-2}{n})^i)$. Taking a logarithm and estimating by a geometric series shows that this product lies in the interval $[e^{-(n-2)\ln 2/2},e^{-(n-2)/4}]$.

This gives the following which is sufficient for the applications in [3], [4]. Let E be a Riemannian vector bundle over M with $|R^E|, |\nabla R^E| < K$, $\mathrm{Ric}_M \geq -k^2$, $\mathrm{diam}(M) < D$. Then for L^2 -orthonormal eigensections $S_1, ..., S_m$ of E with eigenvalues $\lambda_1, ..., \lambda_m$, the formulas

$$\|\langle S_i, S_j \rangle - \delta_{ij} \|_{\infty} \le \tau(\lambda_m | n, k, K, R)$$
$$\|\nabla S_i \|_{\infty} < \tau(\lambda_m | n, k, K, R)$$

hold, where $\tau \to 0$ as $\lambda_m \to 0$.

1

See [1], [2] for arguments which lead to similar results without requiring a uniform bound on ∇R^E . We would like to thank W. Ballman for pointing out this error to us.

REFERENCES

- [1] W. Ballman, J. Bruning, and G. Carron, Eigenvalues and holonomy, preprint.
- [2] B. Colbois, P. Ghanaat, and E. Ruh, Curvature and a spectral characterization of nilmanifolds, preprint.
- [3] P. Petersen and C. Sprouse, Eigenvalue pinching for Riemannian vector bundles, J. Reine Angew. Math. **511** (1999), 73-86.
- [4] P. Petersen and C. Sprouse, Eigenvalue pinching on *p*-forms, Proceedings of the Fifth Pacific Rim Geometry Conference, Tohoku Math. Pub. **20** (2001), 139-145.