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Abstract. We prove lower Dirac eigenvalue bounds for closed surfaces
with a spin structure whose Arf invariant equals 1. Besides the area only
one geometric quantity enters in these estimates, the spin-cut-diameterδ(M)
which depends on the choice of spin structure. It can be expressed in terms of
various distances on the surfaces or, alternatively, by stable norms of certain
cohomology classes. In case of the 2-torus we obtain a positive lower bound
for all Riemannian metrics and all nontrivial spin structures. For higher
genusg the estimate is given by

|λ| ≥ 2
√

π

(2g + 1)
√

area(M)
− 1

δ(M)
.

The corresponding estimate also holds for theL2-spectrum of the Dirac
operator on a noncompact complete surface of finite area. As a corollary we
get positive lower bounds on the Willmore integral for all 2-tori embedded
in R

3.

Mathematics Subject Classification (2000):58J50, 53C27, 53A05

1 Introduction

Relating analytic invariants of the Dirac operator such as the eigenval-
ues to the geometry of the underlying manifold is in general a difficult
problem. Explicit computation of the spectrum is possible only in cases
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of very large symmetry, see [4,6,7,10,12–14,16,18,24,33,34,36,39,40,
42–45,47,48] for examples. In general, the best one can hope for are geo-
metric bounds on the eigenvalues. The first lower eigenvalue bounds [17],
[25],[26],[27],[28] for the Dirac spectrum require positivity of the scalar
curvature since they are based on variations of the Lichnerowicz formula
D2 = ∇∗∇+scal/4. Refining this technique Hijazi [22,23] could estimate
the smallest Dirac eigenvalue against the corresponding eigenvalue of the
Yamabe operator. A completely different approach building on Sobolev em-
bedding theorems was used by Lott [31] and the first author [2] to show that
for each closed spin manifoldM and each conformal class[g0] onM there
exists a constantC = C(M, [g0]) such that all nonzero Dirac eigenvaluesλ
with respect to all Riemannian metricsg ∈ [g0] satisfy

λ2 ≥ C

vol(M)2/n
.

On the 2-sphereM = S2 there is only one conformal class of metrics (up
to the action of the diffeomorphism group) and we therefore get a nontrivial
lower bound for all metrics. Lott conjectured that in this case the optimal
constant should beC = 4π. Returning to the Bochner technique the second
author showed that this is in fact true:

Theorem 1.1 ([5, Theorem 2]).Let λ be any Dirac eigenvalue of the2-
sphereS2 equipped with an arbitrary Riemannian metric. Then

λ2 ≥ 4π
area(S2)

.

Equality is attained if and only ifS2 carries a metric of constant Gauss
curvature.

In particular, there are no harmonic spinors onS2. Theorem 1.1 will be
the central tool to derive our new estimates in the present paper. Examples
[7], [41] show that such an estimate is neither possible for higher dimensional
spheres nor for surfaces of higher genus, at least not in this generality. Every
closed surface of genus at least 1 has a spin structure and a metric such that 0
is an eigenvalue, i. e. there are nontrivial harmonic spinors [18], [24]. The 2-
torusT 2 has four spin structures one of which is called trivial and the others
nontrivial. Provided with the trivial spin structure,T 2 has harmonic spinors
for all Riemannian metrics. On the other hand, for the three nontrivial spin
structures 0 is never an eigenvalue. So it should in principle be possible to
give a geometric lower bound in this latter case. The problem is that this
estimate must take into account the choice of spin structure but the Bochner
technique is based on local computation where the spin structure is invisible.
Hence new techniques are needed.
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The first estimate using information from the choice of spin structure
has been derived by the first author [1, Corollary 2.4]. On a torus with a
Riemannian metric and a nontrivial spin structure there is a lower bound for
any eigenvalueλof the Dirac operator. LetK denote Gauss curvature. Recall
that the systole is the minimum of the lengths of all noncontractible closed
curves. The spinning systole spin-sys(T 2) is the minimum of the lengths of
all noncontractible simple closed curves, along which the spin structure is
nontrivial. If there existsp > 1 with ‖K‖Lp · area(T 2)1−(1/p) < 4π, then
there is a positive numberC > 0 such that

λ2 ≥ C

spin-sys(T 2)2
.

HereC is an explicitly given expression inp, ‖K‖Lp , the area, and the
systole.

The Arf invariant associates to each spin structure on a closed surface
the number1 or−1. In case of the 2-torus the Arf invariant of the trivial spin
structure is−1 while the three nontrivial spin structures have Arf invariant
1. In the present paper we prove explicit geometric lower bounds for the
first eigenvalue of the square of the Dirac operator on closed surfacesM
of genus≥ 1 provided the spin structure has Arf invariant1. Only two
geometric quantities enter, the area of the surface and an invariant we call
the spin-cut-diameterδ(M). The numberδ(M) is defined by looking at
distances between loops in the surface along which the spin structure is
nontrivial and which are linearly independent in homology. It exists if and
only if the Arf invariant of the spin structure equals1. It can also be defined
in terms of stable norms of certain cohomology classes which depend on
the choice of spin structure (Proposition 4.1).

In the case of a 2-torus we show:

Theorem 5.1.LetT 2 be the 2-torus equipped with an arbitrary Riemannian
metric and a spin structure whose Arf invariant equals1. Letλ be an eigen-
value of the Dirac operator and letδ(T 2) be the spin-cut-diameter. Then for
anyk ∈ N,

|λ| ≥ − 2
k δ(T 2)

+

√
π

k area(T 2)
+

2
k2δ(T 2)2

.

The right hand side of this inequality is positive for sufficiently largek.
Hence this theorem gives a nontrivial lower eigenvalue bound for the Dirac
operator for all Riemannian metrics and all nontrivial spin structures on the
2-torus.
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Similarly, for higher genus we obtain:

Theorem 6.1.LetM be a closed surface of genusg ≥ 1with a Riemannian
metric and a spin structure whose Arf invariant equals 1. Letδ(M) be the
spin-cut-diameter ofM . Then for all eigenvaluesλ of the Dirac operator
we have

|λ| ≥ 2
√

π

(2g + 1)
√

area(M)
− 1

δ(M)
.

In the caseg = 1 this estimate is simpler but weaker than Theorem 5.1.
Every surface of genusg ≥ 2 admits metrics and spin structures such that
this estimate is nontrivial. But in contrast to the first theorem there are also
Riemannian metrics and spin structures on surfaces of genusg ≥ 1 for
which the right hand side of this inequality is negative although there are no
harmonic spinors.

If one restricts one’s attention to surfaces embedded inR
3, then one

has the Willmore integralW (M) defined as the integral of the square of the
mean curvature. It is well-known that the Willmore integral can be estimated
against Dirac eigenvalues. Thus as a corollary to Theorem 5.1 we obtain

Theorem 7.1Let T 2 ⊂ R
3 be an embedded torus. Letδ(T 2) be its spin-

cut-diameter and letW (T 2) be its Willmore integral. Then for anyk ∈ N

√
W (T 2) ≥

√
π

k
+

2area(T 2)
k2 δ(T 2)2

− 2
√

area(T 2)
k δ(T 2)

In the end of the paper we show that our spectral estimates also work
for noncompact complete surfaces of finite area. In this case the spectrum
need not consist of eigenvalues only. We estimate the fundamental tone of
the square of the Dirac operator which gives the length of the spectral gap
about0 in theL2-spectrum, see Theorem 8.1.

The paper is organized as follows. We start by recalling some basic
definitions related to spin structures and Dirac operators on surfaces. We put
some emphasis on the case of a surface embedded inR

3. We then recall the
Arf invariant and define the spin-cut-diameterδ(M). In Sect. 4 we show how
δ(M) relates to the stable norm of certain cohomology classes. In Sects. 5
and 6 we prove Theorems 5.1 and 6.1. The central idea of proof consists
of constructing a surface of genus0 out of the given surface by cutting and
pasting. Then we apply Theorem 1.1. The estimate for the Willmore integral
is proved in Sect. 7 and in Sect. 8 we study theL2-spectrum of noncompact
complete surfaces of finite area.



Dirac eigenvalue estimates on surfaces 427

2 Dirac operators on surfaces

Let M be an oriented surface with a Riemannian metric. Rotation by90 de-
grees in the positive direction defines a complex multiplicationJ on TM .
The bundleSO(M) of oriented orthonormal frames is anS1-principal bun-
dle overM . Let SM be the bundle of unit tangent vectors onM . Then
v 
→ (v, Jv) is a fiber preserving diffeomorphism fromSM to SO(M)
with inverse given by projection to the first vector.

Let Θ : S1 → S1 be the nontrivial double covering ofS1. A spin
structure onM is anS1-principal bundleSpin(M) overM together with a
twofold covering mapθ : Spin(M)→ SO(M) such that the diagram

Spin(M)× S1 → Spin(M)
↘

↓ θ ×Θ ↓ θ M
↗

SO(M)× S1 → SO(M)

(1)

commutes.
Every orientable surface admits a spin structure, but it is in general not

unique. The number of possible spin structures onM equals the number of
elements inH1(M, Z2).

Example.Let i : M ↪→ R
3 be an immersion of an oriented surface (not

necessarily compact, and possibly with boundary) intoR
3. We define a map

i∗ : SO(M) → SO(3) as follows:(v, Jv) ∈ SO(M) over a basepoint
m ∈M is mapped to(v, Jv, v × Jv) ∈ SO(3). Here× denotes the vector
cross product inR3. Let Spin(M) be the pullback of the double covering
Θ3 : Spin(3)→ SO(3), i. e.

Spin(M)

:=
{
((v, Jv), A) ∈ SO(M)× Spin(3)

∣∣∣ i∗(SO(M)) = Θ3(A)
}

.

ThenSpin(M) → SO(M) is a fiberwise nontrivial double covering. Let
π : SO(M)×Spin(3)→ SO(M)be the projection onto the first component.
Then (Spin(M), π|Spin(M)) is a spin structure onM , the spin structure
induced by the immersion.

Let γ : S1 → M be an immersion or, in other words, a regular closed
curve. Then the vector fieldγ̇|γ̇| is a section ofSM alongγ, which, by the

above diffeomorphism fromSM to SO(M), yields the section( γ̇
|γ̇| , J

γ̇
|γ̇|)

of SO(M) alongγ.

Definition. The spin structure(Spin(M), θ) is said to betrivial along γ if
this section lifts to a closed curve inSpin(M) via θ.
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This notion is invariant under homotopic deformation ofγ within the
class of immersions.

Example.The unique spin structure onR2 is nontrivial along any simple
closed curve. More generally, any spin structure on a surfaceM is nontrivial
along any contractible simple closed curve.

Proposition 2.1. Let i : M ↪→ R
3 be an immersion. Letγ : S1 →M be a

simple closedcurve. Ifγ is aparametrizationof theboundaryof an immersed
two-dimensional diskj : D ↪→ R

3 intersectingi(M) transversally, then the
spin structure onM induced byi is nontrivial alongγ.

X

Y

Z

i(M)
j(D)

γ

Fig. 1.A criterion for nontriviality of the spin structure alongγ

Proof. We can assume thatj(D) andi(M) intersect orthogonally alongγ.
We setX(t) := γ̇(t)

|γ̇(t)| , Y (t) := JMX(t) andZ(t) := X(t) × Y (t). The

induced spin structure onM is trivial alongγ if and only ifS1 → SO(3), t 
→
(X(t), Y (t), Z(t)), lifts to a closed loop inSpin(3). Analogously, we view
γ as a curve onj(D), we define the vector fieldŝY (t) := JDX(t) and
Ẑ(t) := X(t)× Ŷ (t). Because of the orthogonality ofj(D) andi(M) we
haveŶ (t) = ±Z(t) andẐ(t) = ∓Y (t).

Hencet 
→ (X(t), Ŷ (t), Ẑ(t)) lifts to Spin(3) if and only if t 
→
(X(t), Y (t), Z(t)) lifts. The induced spin structure onM is nontrivial along
γ if and only if the spin structure onD is nontrivial alongγ. This is always
true according to the previous example. ��
Example.Let Z := {(x, y, z) ∈ R

3 |x2 + y2 = 1} be the cylinder with
the induced spin structure. Letγ be any simple closed curve inZ. We
show that the spin structure is nontrivial alongγ: If γ is contractible then
the spin structure is nontrivial because of the preceeding example. Ifγ is



Dirac eigenvalue estimates on surfaces 429

noncontractible, then[γ] generatesπ1(Z) (Lemma A.1). Hence it bounds a
disk transversal toZ.

LetΣ+M := Spin(M)×ι C be the complex line bundle overM associ-
ated to theS1-principal bundleSpin(M) and to the standard representation
ι : S1 → U(1). This line bundle is called thebundle of positive half-spinors,
its complex conjugateΣ−M := Σ+M is thebundleof negativehalf-spinors
and their sumΣM := Σ+M ⊕Σ−M is thespinor bundle.

Clifford multiplication consists of complex linear maps

TM ⊗C Σ+M → Σ−M

TM ⊗C Σ−M → Σ+M

denoted byv ⊗ σ 
→ v · σ. It satisfies the Clifford relations

v · w · σ + w · v · σ + 2〈v, w〉σ = 0

for all v, w ∈ TM andσ ∈ ΣM over a common base point.
The Levi-Civita connection onTM gives rise to a connection-1-form

onSpin(M) and this in turn defines a Hermitian connection∇ onΣM .

Definition. TheDirac operatorD is a map from smooth sections ofΣM
to smooth sections ofΣM which is locally given by the formula

DΨ := e1 · ∇e1Ψ + e2 · ∇e2Ψ

for a local orthonormal frame(e1, e2) of TM .

It is easily checked that the definition does not depend on the choice
of the local frame and thatD is a formally self-adjoint elliptic operator.
Hence, ifM is closed, the spectrum ofD is real and discrete with finite
multiplicities.

For any smooth functionf and smooth spinorΨ the equation

D(fΨ) = ∇f · ψ + fDΨ

holds. Here∇f denotes the gradient off .
For more background material on Dirac operators and spin structures see

e. g. [30], [19], or [38].
To simplify notation aclosedsurface will always mean a surface which

is compact, without boundary, andconnected.
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3 Arf invariant and spin-cuts

In this section we review some properties of the Arf invariant which is an
invariant of a spin structure on a surface (see [37] for more details). For
closed oriented surfaces with spin structures whose Arf invariant equals1
we define a geometric quantity, the spin-cut-diameter, which will play an
important role in our estimate.

LetV be a2g-dimensional vector space over the fieldZ2,g ∈ N, together
with a symplectic2-formω : V → Z2 = {0, 1}. A quadratic formon(V, ω)
is a mapq : V → Z2, such that

q(a + b) = q(a) + q(b) + ω(a, b) a, b ∈ V.

The difference of two quadratic forms on(V, ω) is a linear map fromV
to Z2 and vice versa the sum of a linear mapV → Z2 and a quadratic form
is again a quadratic form. Hence the space of quadratic forms onV is an
affine space overHom(V, Z2).

Example.LetM be a closed oriented surface. LetV := H1(M, Z2) and let
ω be the intersection form∩. Fix a spin structure onM . We associate to each
spin structure a quadratic formqspin on (V, ω) as follows. Each homology
classa ∈ H1(M, Z2) is represented by an embeddingγ : S1 →M . We set
qspin(a) := 1, if (γ̇, J(γ̇)) : S1 → SO(M) lifts to Spin(M), otherwise we
setqspin(a) := 0.

According to Theorem 1 of [29] the mapqspin is a well-defined quadratic
form on(H1(M, Z2),∩).

The set of all spin structures onM is an affine space overH1(M, Z2) =
Hom(H1(M, Z2), Z2) and it is a well known fact that the map which as-
sociates to any spin structure the corresponding quadratic formqspin is an
isomorphism of affineH1(M, Z2)-spaces from the space of spin structures
onM to the space of quadratic forms on(V, ω) = (H1(M, Z2),∩).
Definition. For any quadratic formq on (V, ω) theArf invariant is defined
by

Arf(q) :=
1√
#V

∑
a∈V

(−1)q(a).

The Arf invariant of a quadratic form corresponding to a spin structure will
be called theArf invariant of that spin structure.

Lemma 3.1. Letqi beaquadratic formon(Vi, ωi) for i = 1, 2. Thenq1⊕q2,
given by

(q1 ⊕ q2)(v1 + v2) = q1(v1) + q(v2),
is a quadratic form on(V1 ⊕ V2, ω1 ⊕ ω2). Moreover,

Arf(q1 ⊕ q2) = Arf(q1)Arf(q2).
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The proof is a simple counting argument. ��
Any 2g-dimensional symplectic vector spaceV with a symplectic form

ω is isomorphic to theg-fold sumV2 ⊕ · · · ⊕ V2 whereV2 is the standard
2-dimensional symplectic vector space. Since the Arf invariants of the four
possible choices of quadratic forms onV2 are either1or−1 the above lemma
implies

Arf(q) ∈ {−1,+1}
for any quadratic formq on any symplecticZ2-vector space.

Proposition 3.2. Let q be a quadratic form on(V, ω), dimV = 2g. Then
the following statements are equivalent:

(1) Arf(q) = 1.
(2) There isabasise1, f1, . . . , eg, fg of V such thatω(ei, ej) = ω(fi, fj) =

0, ω(ei, fj) = δij , andq(ei) = q(fj) = 0 for all i, j.
(3) There are linearly independent vectorse1, . . . , eg in V such that

ω(ei, ej) = 0 andq(ei) = 0 for all i, j.

Proof. (2)⇒(1) follows directly from Lemma 3.1.
To show (3)⇒(2) let e1, . . . , eg be linearly independent vectors with

ω(ei, ej) = 0 and q(ei) = 0 for all i, j. Sinceω is symplectic, we can
find f̃1, . . . , f̃g satisfyingω(ei, f̃j) = δij andω(f̃i, f̃j) = 0 for all i, j. If
q(f̃i) = 0, we setfi := f̃i, otherwise we putfi := f̃i + ei.

To see (1)⇒(3), we take a basise1, f1, . . . , eg, fg of V satisfying
ω(ei, fj) = δij and ω(ei, ej) = ω(fi, fj) = 0. For everyi exactly one
of the following holds:

(a) q(ei) = q(fi) = q(ei + fi) = 1, or
(b) q takes the value0 at exactly two of the vectorsei, fi andei + fi.

In the second case, we can assume without loss of generality thatq(ei) =
q(fi) = 0. Let I be the set of alli for which (a) holds. Then by Lemma 3.1
Arf(q) = (−1)#I . If (1) holds, then#I is even, hence we may assume
I := {1, . . . , 2k}. For j = 1, . . . , k we replacee2j−1 by e2j−1 + f2j and
e2j by e2j + f2j−1. Then (3) holds. ��
Example.Let M ↪→ R

3 be an embedded closed surface with the induced
spin structure. Then because of Propositions 2.1 and 3.2 (3) the Arf invariant
of the spin structure is1. As a consequence any immersionM ↪→ R

3 whose
induced spin structure has Arf invariant−1 is not regularly homotopic to an
embedding.

Remark.In the literatur the3 spin structures on the 2-torusT 2 with Arf
invariant1 are callednontrivial spin structures and the unique spin structure
with Arf invariant−1 is called thetrivial spin structure.
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Definition. Let M be a closed oriented surface of genusg. A cutof M is a
family of pairwise disjoint simple closed curvesγi : S1 →M , i = 1, . . . , g,
such that[γ1], . . . , [γg] are linearly independent inH1(M, Z). If, in addition,
M carries a spin structure, and if the spin structure is nontrivial along each
of theγi, then we callγ1, . . . , γg aspin-cutof M .

Corollary 3.3. LetM be a closed oriented surface equipped with a spin
structure. ThenM admits a spin-cut if and only if the Arf invariant of the
spin structure equals1.

Proof. If the Arf invariant is1, we can find vectorse1, . . . , eg ∈ H1(M, Z2)
for which (3) of Proposition 3.2 holds. For eachei we choose a preimage
ẽi ∈ H1(M, Z)under the natural mapH1(M, Z)→ H1(M, Z2). We choose
ẽi such that̃ei is primitive, i. e. there are noai ∈ H1(M, Z), n ≥ 2 with
ei = n · ai. This choice can be made such thatẽi ∩ ẽj = 0 for all i, j. We
choose a hyperbolic metricghyp onM and represent̃ei by closed curvesγi

of minimal length. Then theγi are closed geodesics. They are simple closed
curves because thẽei are primitive. Sincẽei∩ ẽj = 0 andghyp is hyperbolic,
γi andγj are disjoint fori �= j. The spin structure is nontrivial along each
γi because ofqspin(ei) = 0. Henceγ1, . . . , γg form a spin-cut ofM .

Conversely, ifγ1, . . . , γg form a spin-cut ofM , then [γ1], . . . , [γg] ∈
H1(M, Z) form a linearly independent set of primitive elements in
H1(M, Z). Hence their imagesei in H1(M, Z2) are also linearly indepen-
dent. Theei satisfy (3) of Proposition 3.2 and thus the Arf invariant is1.
��
Definition. LetM be a closed surface. Letγ1, . . . , γg be a cut. Thecut-open
M̃ ofM is a surface with boundary, such that there is a smooth mapM̃ →M

which is a diffeomorphism from the interior of̃M ontoM \⋃g
j=1 γj and a

twofold covering from the boundary∂M̃ onto
⋃g

j=1 γj .

Riemannian metrics and spin structures onM can be pulled back tõM .

Lemma 3.4. Letγ1, . . . , γg be a cut ofM . Then the cut-opeñM is diffeo-
morphic to a sphereS2 with 2g disks removed. Moreover, if it is a spin-cut,
M̃ carries the spin structure inherited fromS2.

Proof. At first we prove that̃M is connected. Assume that̃M is not con-
nected. This would imply that the boundary of one of the connected com-
ponents of̃M is homologous to zero. Hence a nontrivial linear combination
of the[γi] vanishes which is impossible by the definition of a cut.

Since the Euler characteristic of̃M satisfiesχ(M̃) = χ(M) = 2 − 2g
andM̃ has2g boundary circles, it must be diffeomorphic to a sphereS2

with 2g disks removed.
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M
γ1 γ2

M̃

Fig. 2.The cut-opeñM and its projection ontoM

In the case of a spin-cut, the spin structure is nontrivial along each of
the boundary components. Therefore the spin structure extends to the disk
which has been removed. HencẽM carries the spin structure which is the
pullback of the unique spin structure onS2 under any injective immersion
M̃ ↪→ S2. ��

Definition. Let M be a closed surface with a fixed Riemannian metric and
a fixed spin structure with Arf invariant1. Let γ1, . . . , γg be a spin-cut.
Denote by∂1M̃, . . . , ∂2gM̃ the boundary components of the cut-opeñM .
We define thecut-diameterof the spin-cut by

δ(γ1, . . . , γg) := min
1≤i<j≤2g

d(∂iM̃, ∂jM̃),

whered(A,B) denotes the length of a shortest path joiningA andB. The
spin-cut-diameterof M is defined as

δ(M) := sup δ(γ1, . . . , γg)

with the supremum running over all spin-cuts. The spin-cut-diameterδ(M)
is a finite positive number depending on the surfaceM , the Riemannian
metric and the spin structure.
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M

γ1 γ2

Fig. 3.The cut-diameter is the length of the shortest dotted line (only representatives of 4 of
the 6 homotopy classes of lines are shown)

4 Stable norms and the spin-cut-diameter

Let M be a closed Riemannian manifold. In this section we define norms
onH1(M, R) andH1(M, R), the stable norms, and we recall some of their
properties. We will be able to express the spin-cut-diameter defined in the
previous section in terms of stable norms of certain cohomology classes
which depend on the spin structure. A good reference for stable norms is
[21], Chapter 4C. A more detailed exposition of stable norms can be found
in [15].

For anyv ∈ H1(M, R) thestable normis defined as

‖v‖st := inf

{
k∑

i=1

|ai| · length(ci)

}

where the infimum runs over all 1-cycles
∑k

i=1 aici representingv with
ai ∈ R, k ∈ N ∪ {0} andci : S1 →M smooth.

For cohomology classesα ∈ H1(M, R) we define thestable normby

‖α‖st := inf ‖ω‖L∞ ,

where the infimum runs over all closed smooth 1-formsω representingα.
These norms are dual to each other in the following sense:

‖α‖st = sup {α(v) | v ∈ H1(M, R), ‖v‖st = 1} ,

‖v‖st = sup
{
α(v) |α ∈ H1(M, R), ‖α‖st = 1

}
.

We can also characterize the stable norm onH1(M, R) in terms of lengths
of closed curves. For any 1-cyclev ∈ H1(M, R) which lies in the image of
the mapH1(M, Z)→ H1(M, R) the relation

‖v‖st = inf
{ 1

n
length(γ)

∣∣∣ γ is a closed curve representingnv, n ∈ N

}
holds.
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If M = Tn, then-dimensional torus with an arbitrary Riemannian met-
ric, then one can identifyH1(Tn, R) with the universal covering ofTn. Let
d be the distance function onH1(Tn, R) induced by the pullback of the
Riemannian metric onTn. Burago [11] proved that there is a constantC,
such that for anyx, y ∈ H1(Tn, R)

|d(x, y)− ‖x− y‖st| ≤ C.

Roughly speaking, this result says that the stable norm is a good approx-
imation for the distanced.

The stable norm also plays a central role in Bangert’s criterion [3] for
the existence of globally minimizing geodesics on the universal covering
M̃ of a closed Riemannian manifoldM . E. g. if b1(M) ≥ 2, and if the
stable norm onH1(M, R) is strongly convex, then there are infinitely many
geodesics onM whose lifts are globally minimizing geodesics oñM .

In the special case thatM is a closed orientable surface of positive genus,
any closed curveγ representing a nontrivial[γ] = [α]n ∈ π1(M)withn ≥ 2
has a self-intersection. To see this, letM be the universal covering. We liftγ
to M/〈[α]〉 where[α] acts via deck transformations and apply Lemma A.1
for S \ {N,S} ∼= M/〈[α]〉. A standard curve shortening argument shows
that in this case we can characterize the stable norm of an integral classv
as follows:

‖v‖st = inf {length(γ) | γ is a closed curve inM representingv}.
Remark.An intersection argument implies that‖ · ‖st is a strictly convex
norm onH1(T 2, R) [32]. In contrast to this, on any surface of genus≥ 2
the stable norm is not strictly convex [32].

In the remaining part of this section we specialize to the caseM = T 2,
and we will show how the stable norm can be used to express the spin-cut-
diameter of a spin structure.

Let γ : S1 → T 2 be a noncontractible simple closed curve along which
the spin structure is nontrivial. Then[γ] ∈ H1(T 2, Z) \ {0}. We define
αγ ∈ H1(T 2, Z) via the relation

〈αγ , β〉 = [γ] ∩ β, ∀β ∈ H1(T 2, Z).

Proposition 4.1. Let δ(M) be the spin-cut-diameter of a 2-torus with spin
structure whose Arf invariant equals1. Let γ0 : S1 → T 2 be a noncon-
tractible simple closed curve along which the spin structure is nontrivial,
i. e.γ0 is a spin-cut ofM . Then for

δ0 := sup{δ(γ) | γ is a simple closed curve homotopic toγ0}
we have

δ0 =
1

‖αγ0‖st
.
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Proof.

(a) We showδ0 ≤ 1/‖αγ0‖st.
Let ε > 0. Choose a simple closed curveγ homotopic toγ0 such that
δ(γ) ≥ (1 + ε)−1δ0. We cutT 2 alongγ. Then the cut-opeñM thus
obtained is a topological cylinder. Let̃c : [a, b] → M̃ be a curve of
minimal length joining the two boundary components∂1M̃ and∂2M̃ of
M̃ . Letcbe the image of̃cunder the map̃M → T 2. Clearlylength(c) =
length(c̃) = δ(γ) ≥ (1 + ε)−1δ0. Let f : M̃ → [0, δ0] be a smooth
function with the following properties:

|df | ≤ 1 + 2ε,
f ≡ 0 on a neighborhood of∂1M̃,

f ≡ δ0 on a neighborhood of∂2M̃.

Such anf can be obtained for example by a smooth approximation of
the Lipschitz function

f̄ : M̃ → [0, δ0],

x 
→ δ0

δ(γ)
min

{
d(x, ∂1M̃), δ(γ)

}
.

Let ω be the1-form onT 2 such thatdf equals the pullback ofω.
We now proveδ0 · αγ = ±[ω].
Observe thatω(γ̇(t)) = d

dt (f ◦ γ) ≡ 0, sincef is constant along∂1M̃ .
Hence

∫
γ|I ω = 0 for anyI ⊂ S1. In particular,

〈[ω], [γ]〉 =
∫

γ
ω = 0.

There aret1, t2 ∈ S1 such thatγ(t1) = c(a), γ(t2) = c(b). Let β be
the product pathβ := γ|[t2,t1] ∗ c.
Then[γ] ∩ [β] = ±1. Moreover,

〈[ω], [β]〉 =
∫

γ|[t2,t1]

ω︸ ︷︷ ︸
=0

+
∫

c
ω =

∫
c
df = f(c(b))− f(c(a))

= δ0 = ±δ0 [γ] ∩ [β] = ±δ0 〈αγ , [β]〉.
Therefore[ω] ∓ δ0 · αγ vanishes on[γ] and on[β]. Since[γ] and [β]
form a basis ofH1(T 2, Z) we obtainδ0 · αγ = ±[ω].
From

δ0 · ‖αγ‖st = ‖[ω]‖st ≤ ‖ω‖L∞ ≤ 1 + 2ε

we get the≤-part of the equation by taking the limitε→ 0.
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γ

γ(t2)

γ(t1)

c

Fig. 4.The curveβ in the proof of Proposition 4.1 (thick line)

(b) Now we proveδ0 ≥ 1/‖αγ0‖st.
We choose a smooth closed 1-formω on T 2 such that[ω] = αγ0 and
‖ω‖L∞ ≤ ‖αγ0‖st + ε for smallε > 0. The cyclic subgroup〈[γ0]〉 of
π1(T 2) generated by[γ0] acts via deck transformations on the universal
coveringR

2 of T 2. Define the cylinderZ := R
2/〈[γ0]〉. Since[γ0] gen-

erates the first cohomology ofZ andαγ0 vanishes on[γ0] the pullback
of the cohomology class[ω] = αγ0 is trivial onZ. Hence we can find a
smooth functionf : Z → R such thatdf is the pullback ofω under the
coveringZ → T 2.
The functionf is proper. Without loss of generality we can assume
that0 is a regular value off . Thenf−1(0) is a union of simple closed
curves. According to Lemma A.2 there is a simple closed curveγ in
f−1(0) whose homotopy class generatesπ1(Z). Choose the orientation
of γ such thatγ is homotopic toγ0. The spin struture is nontrivial
alongγ, henceγ defines a spin-cut̃M → M , i. e. a map which is a
diffeomorphism from the interior of̃M ontoM \ γ(S1) and a trivial
double covering from∂M̃ ontoγ(S1).
We can identifyM̃ with a closed subset ofZ, and we can assume that
f |∂1M̃ ≡ 0, f |∂2M̃ ≡ 1, where∂1M̃ and∂2M̃ denote the two boundary

components of̃M .
Let c : [a, b] → M̃ be a curve of minimal length joining the two
boundary components∂1M̃ and∂2M̃ . By definition we haveδ(γ) =
length(c). It follows

1 = f(c(b))− f(c(a)) =
∫

c
df

≤ length(c) ‖df‖L∞

= δ(γ) ‖ω‖L∞
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≤ δ0

(
‖α‖st + ε

)
.

The limit ε→ 0 yieldsδ0 ≥ /‖αγ0‖st. ��
Corollary 4.2. The spin-cut-diameter satisfies

δ(M) = sup

{
1

‖αγ‖st
∣∣∣ γ is a noncontractible simple closed curve

along which the spin structure is nontrivial.

}
��

5 An estimate for the 2-torus

We now come to the first main result of this paper. We give a geometric
lower bound for the eigenvalues of the Dirac operator on a 2-torus which is
nontrivial for all metrics and for all spin structures.

Theorem 5.1. Let T 2 be the 2-torus equipped with an arbitrary Rieman-
nian metric and a spin structure whose Arf invariant equals1. Letλ be an
eigenvalue of the Dirac operator and letδ(T 2) be the spin-cut-diameter.
Then for anyk ∈ N,

|λ| ≥ − 2
k δ(T 2)

+

√
π

k area(T 2)
+

2
k2δ(T 2)2

.

Note that the right hand side of this inequality is positive for sufficiently
largek, but tends to0 for k →∞. The best bound is obtained by choosing

k =
[
4 (1 +

√
2)

area(T 2)
π δ(T 2)2

]
or

k =
[
4 (1 +

√
2)

area(T 2)
π δ(T 2)2

]
+ 1.

Proof. Letγ be a spin-cut, i. e.γ is a simple closed curve inT 2 along which
the spin structure is nontrivial. Assumeδ(γ) ≥ (1 + ε)−1 δ(T 2) for small
ε > 0.

We now proceed as in part (a) of the proof of Proposition 4.1. On the
cut-openT̃ 2 we obtain a functionf : T̃ 2 → [0, δ(T 2)] satisfying

|df | ≤ 1 + 2ε,
f ≡ 0 on a neighborhood of∂1T̃

2,

f ≡ δ(T 2) on a neighborhood of∂2T̃
2.
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T 2

· · ·· · ·
Z

T̃ 2

γ̃

γ γ

w · γ̃

f

−δ(T 2) 0 δ(T 2) 2δ(T 2)

Fig. 5.The cylinderZ and a fundamental domain

Let ω be the1-form onT 2 such thatdf equals the pullback ofω.
The homotopy class[γ] ∈ π1(T 2) acts on the universal coveringR2 of

T 2, and
Z := R

2/〈[γ]〉
is a cylinder coveringT 2. We pull the metric and the spin structure onT 2

back to a metric and a spin structure onZ.
We fix a w ∈ π1(T 2) with [γ] ∩ w = 1. Thenw generates the deck

transformation group of the coveringZ → T 2. Let γ̃ : S1 → Z be a lift of
γ. ThenZ \ (γ̃(S1) ∪ w · γ̃(S1)) consists of three connected components.
Two of them are unbounded and one is bounded. The closure of the bounded
component can be identified with the cut-openT̃ 2. The functionf can then
be extended “pseudo-periodically” toZ, more precisely,

f(w + p) = δ(T 2) + f(p) (2)

for all p ∈ Z, wherew acts as a deck transformation onZ. Note that

area
(
f−1((t, t + δ(T 2)])

)
= area(T̃ 2) = area(T 2).

We set
T−k := f−1

(
[−kδ(T 2), 0]

)
,

Tk := f−1
(
[0, kδ(T 2)]

)
.

BothT−k andTk are isometric tok copies ofT̃ 2 glued together to a cylinder.
Similarly, we considerT−k ∪Tk as a cylinder consisting of2k copies ofT̃ 2.
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We glue two disks to the remaining two boundary components ofT−k ∪ Tk

and obtain a surfaceN of genus0. We extend the metric onT−k ∪ Tk to
one onN such that the total area of the two disk glued in is smaller thanε.
Hence

area(N) ≤ 2k area(T 2) + ε.

By Proposition 2.1 the spin structure onT−k ∪ Tk extends to the unique
spin structure onN .

For fixedk ∈ N let X1 : R → [0, 1] be a smooth function with

X1(t) = 1 for t ≤ 0,
X1(t) = 0 for t ≥ k,

|X ′
1(t)| ≤

1 + ε

k
for all t.

We setX(t) := X1(t)−X1(t + k). Then

χ(p) := X

(
f(p)
δ(T 2)

)
is a compactly supported smooth function onZ with

k · ‖∇χ‖L∞ ≤ k · ‖X ′‖L∞ · ‖df‖L∞

δ(T 2)
≤ (1 + ε)(1 + 2ε)

δ(T 2)
=: aε.

We denote theL2-norm of a spinorϕ on a subsetA of the manifold on which
ϕ is defined by

‖ϕ‖A :=

√∫
A
|ϕ|2 d area.

If A equals the whole manifold we simply write

‖ϕ‖A =: ‖ϕ‖.
Now letϕ be an eigenspinor onT 2 corresponding to an eigenvalueλ of the
Dirac operator. By the preceeding lemma, the spin structure pulled back via
π extends to the unique spin structure onN . Thusχ · π∗ϕ is a well-defined
spinor onN , and we obtain the following estimate

‖D(χ · π∗ϕ)‖2T−k
= ‖∇χ · π∗ϕ + χ ·D(π∗ϕ)‖2T−k

≤
(aε

k
· ‖π∗ϕ‖T−k

+ |λ| ‖χ · π∗ϕ‖T−k

)2

≤ a2
ε

k2 · ‖π∗ϕ‖2T−k
+

2|λ|aε

k
‖π∗ϕ‖2T−k

+λ2 ‖χ · π∗ϕ‖2T−k

=
(

a2
ε

k
+ 2|λ| aε

)
‖ϕ‖2T 2 + λ2 ‖χ · π∗ϕ‖2T−k

. (3)
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−k k

1
X

Fig. 6.The graph oft �→ X(t)

In a similar manner we obtain

‖D(χ · π∗ϕ)‖2Tk
≤

(
a2

ε

k
+ 2|λ| aε

)
‖ϕ‖2T 2 + λ2 ‖χ · π∗ϕ‖2Tk

. (4)

From

X(t)2 + X(t− k)2 = X(t)2 + (1−X(t))2 ∈ [1/2, 1]

for 0 ≤ t ≤ k we obtain

k

2
‖ϕ‖2T 2 ≤ ‖χ · π∗ϕ‖2T−k∪Tk

≤ k‖ϕ‖2T 2

which together with (3) and (4) gives

‖D(χ · π∗ϕ)‖2T−k∪Tk
≤

{
2

(
a2

ε

k
+ 2|λ| aε

)
+ k · λ2

}
‖ϕ‖2T 2 .

We plugχϕ into the Rayleigh quotient and use Theorem 1.1 to get

4π
2k area(T 2) + ε

≤ 4π
area(N)

≤
‖D(χ · π∗ϕ)‖2T−k∪Tk

‖χ · π∗ϕ‖2T−k∪Tk

≤ 2a2
ε/k + 4|λ| aε + k · λ2

k/2
.

Thus

π

2k area(T 2) + ε
≤ a2

ε

k2 +
2|λ| aε

k
+

λ2

2
.

In the limit asε→ 0 we obtain

π

k area(T 2)
≤ 2

k2δ(T 2)2
+

4|λ|
k δ(T 2)

+ λ2.

Solving this inequality proves the theorem. ��
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M

Γ
r

Fig. 7.The boundaryM of a small neighborhood of a graphΓ in R
3 has a large maximal

spin-cut-diameter compared to the area

6 Compact surfaces of higher genus

Using a similar technique we can also obtain a lower bound for the Dirac
spectrum on closed surfacesM of higher genus.

Theorem 6.1. LetM be a closed surface of genusg ≥ 1with aRiemannian
metric and a spin structure whose Arf invariant equals 1. Letδ(M) be the
spin-cut-diameter ofM . Then for all eigenvaluesλ of the Dirac operator
we have

|λ| ≥ 2
√

π

(2g + 1)
√

area(M)
− 1

δ(M)
.

Note that on any closed oriented surface of genusg ≥ 1 there is a Rie-
mannian metric and a spin structure such thatδ(M)2/area(M) is arbitrarily
large. To see this take a suitable finite graphΓ embedded inR3 and letM be
the boundary (smoothed out appropriately) of a tubular neighborhood ofΓ
of small tubular radiusr > 0. ProvideM with the Riemannian metric and
the spin structure induced fromR3. Then forr → 0 the spin-cut-diameter
stays bounded while the area tends to0. By Theorem 6.1 the smallest eigen-
value ofD2 must then tend to∞. Hence any closed oriented surface carries
a Riemannian metric and a spin structure such that the above estimate is not
trivial.

Theorem 6.1 also holds forg = 1 but in this case Theorem 5.1 with
k = 2 gives a better estimate.

Proof. Letγ1, . . . , γg be a spin-cut ofM . We cutM along theγi and obtain
the cut-opeñM . According to Lemma 3.4,̃M is a compact orientable surface
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of genus0 with 2g boundary components. The two boundary components
of M̃ that arise from cutting alongγi we denote by∂1

i M̃ and∂2
i M̃ .

We assume that the spin-cut has been chosen such thatδ(γ1, . . . , γg) ≥
δ(M)− ε with ε > 0 small.

We take2g+1 copies ofM̃ , denoted bỹM0, . . . , M̃2g. Fort = 1, . . . , g
we glue∂1

t M̃t to ∂2
t M̃0 and∂2

t M̃g+t to ∂1
t M̃0. The resulting surfaceS0 is

of genus0 with 2g(2g − 1) boundary components. We glue disks to these
boundaries and obtain a surfaceS diffeomorphic toS2.

The Riemannian metric onM pulls back to a Riemannian metric oñM
and gives rise to a smooth metric onS0. We extend this metric to a metric
onS such that

area(S) ≤ area(S0) + ε = (2g + 1) area(M) + ε. (5)

Since the spin structure ofM is nontrivial along eachγi, the induced spin
structures oñMi fit together to the unique spin structure onS.

There is a smooth functionχ:S → [0, 1] with the following properties:

(1) χ|M̃0
≡ 1,

(2) χ|S\S0
≡ 0,

(3) ‖∇χ‖L∞ ≤ 1
δ(M)− 2ε

.

Let ϕ be an eigenspinor of the Dirac operator onM to the eigenvalue
λ. This spinor lifts to an eigenspinorϕ0 of the Dirac operator onS0. Thus
χ·ϕ0 is a well-defined spinor onS. We use it as a test spinor for the Rayleigh
quotient. Theorem 1.1 yields

4π
area(S)

≤ ‖D(χ · ϕ0)‖2S
‖χ · ϕ0‖2S .

(6)

We compute

‖D(χ · ϕ0)‖2M̃i
≤

(
1

(δ(M)− 2ε)2
+ |λ|

)2

‖ϕ‖2M .

Summing overi yields

‖D(χ · ϕ0)‖2S ≤ (2g + 1)
(

1
(δ(M)− 2ε)2

+ |λ|
)2

‖ϕ‖2M . (7)

The denominator of the Rayleigh quotient is estimated by

‖χ · ϕ0‖2S ≥ ‖ϕ0‖2M̃0
= ‖ϕ‖2M . (8)
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M̃2

M̃0

M̃1 M̃4

M̃3

Fig. 8.The surfaceS for g = 2

Combining (5),(6),(7), and (8) we obtain

4π
(2g + 1) area(M) + ε

≤ (2g + 1)
(

1
(δ(M)− 2ε)2

+ |λ|
)2

which yields in the limitε→ 0

2
√

π

(2g + 1)
√

area(M)
− 1

δ(M)
≤ |λ|.

��

7 An application to the Willmore integral

TheWillmore integralof an embedded closed surfaceM ⊂ R
3 is defined

by

W (M) =
∫

M
H2dvol = ‖H‖2

whereH denotes the mean curvature ofM . The famousWillmore conjecture
states that for an embedded 2-torus the Willmore integral is bounded by

W (M) ≥ 2π2.

This conjecture has been proven for various classes of embedded 2-tori (see
[46] for a good overview), but in full generality it is still open. We will
not resolve this problem here but our estimates on Dirac eigenvalues imply
lower bounds on the Willmore integral as well.

Let M ⊂ R
3 be an embedded surface of genusg ≥ 1. The discussion

from Sects. 2 and 3 shows that the induced spin structure onM admits spin-
cuts and hence its spin-cut-diameterδ(M) is well-defined. A spin-cut can be
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obtained by choosing disjoint simple closed curvesγ1, . . . , γg onM which
bound transversal disks inR3 and whose homology classes[γ1], . . . , [γg] in
H1(M, Z) are linearly independent.

Theorem 7.1. LetT 2 ⊂ R
3 be an embedded torus. Letδ(T 2) be its spin-

cut-diameter and letW (T 2) be its Willmore integral. Then for anyk ∈ N

√
W (T 2) ≥

√
π

k
+

2area(T 2)
k2 δ(T 2)2

− 2
√

area(T 2)
k δ(T 2)

Proof. In [9] it was shown that a closed surface possesses Dirac eigenvalues
λ satisfying

λ2 ≤ W (M)
area(M)

.

Combining this with Theorem 5.1 yields the result. ��
This theorem yields a positive lower bound onW (T 2) for all embedded

2-tori.

Remark.From Theorem 6.1 we can obtain a similar bound, but it turns out
to be weaker than the well-known boundW (M) ≥ 4π.

8 Noncompact surfaces of finite area

Now we extend the bounds on Dirac eigenvalues to theL2-spectrum of the
Dirac operator on a complete noncompact spin surface of finite area. The
fundamental toneof the square of the Dirac operator on a noncompact spin
manifold is given by

λ2
∗ = inf

ϕ

‖Dϕ‖2
‖ϕ‖2

where the infimum runs over all smooth spinorsϕ with compact support. If
λ2∗ > 0, then theL2-spectrum ofD has a gap about 0, more precisely,

specL2(D) ∩ (−λ∗, λ∗) = ∅.
Any complete surfaceM of finite area is diffeomorphic to a closed surface
M with finitely many points removed. The genusg of M is then also called
the genus ofM . By acutof M we mean a collection of simple closed curves
γ1, . . . , γg on M which are mapped under the diffeomorphism to a cut on
M . If M carries a spin structure, then we call the cut aspin-cutif the spin
structure is nontrivial along allγi just as we did for closed surfaces. If the
spin structure onM extends to one onM , then we say the spin structure is
nontrivial along the ends.
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Given a spin-cut onM one can define thecut-openas before. It is now
a noncompact complete surface of finite area with compact boundary. The
spin-cut-diameteris again defined as the minimal distance of the various
boundary components of the spin-cut. Taking the supremum over all spin-
cuts yields thespin-cut-diameterδ(M) depending on the surface, its Rie-
mannian metric and its spin structure.

Let us show that the results for closed surfaces carry over to the complete
noncompact case without any essential changes.

Theorem 8.1. LetM be a complete surface of genusg ≥ 1with a Rieman-
nian metric of finite area. LetM be equipped with a spin structure which
is nontrivial along the ends and which admits a spin-cut. Letδ(M) be the
spin-cut-diameter ofM . Then

λ∗ ≥ 2
√

π

(2g + 1)
√

area(M)
− 1

δ(M)
.

If g = 1, then for anyk ∈ N

λ∗ ≥ − 2
k δ(M)

+

√
π

k area(T 2)
+

2
k2δ(M)2

.

Proof. Let ε > 0 and letγ1, . . . , γg be a spin-cut such that its spin-cut-
diameter satisfies

δ(γ1, . . . , γg) ≥ δ(M)− ε.

Pick a smooth spinorϕ onM with compact support such that

‖Dϕ‖2
‖ϕ‖2 ≤ λ∗ + ε.

Now we change the metric onM outside the support ofϕ and away from
theγi such that it extends toM and such that

area(M) ≤ area(M) + ε.

Since the spin structure ofM is nontrivial along the ends it extends to one
onM . Theorem 6.1 applied toM now yields

λ∗ + ε ≥ ‖Dϕ‖2
‖ϕ‖2

≥ 2
√

π

(2g + 1)
√

area(M)
− 1

δ(γ1, . . . , γg)

≥ 2
√

π

(2g + 1)
√

area(M) + ε
− 1

δ(M)− ε
.

Takingε → 0 finishes the proof of the first assertion. The second part for
g = 1 is shown similarly. ��
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The assumption that the spin structure be nontrivial along the ends is
crucial. It has been shown by the second author [8] that theL2-spectrum
of the Dirac operator on a complete hyperbolic surface of finite area whose
spin structure is not nontrivial along the ends is given by

specL2(D) = R.

A Two lemmata about cylinders

Lemma A.1. Letγ : S1 → S2 \ {N,S} be a simple closed curve in the 2-
sphere without North PoleN and South PoleS. Then eitherγ is contractible
in S2 \ {N,S} or the homotopy class ofγ generatesπ1(S2 \ {N,S}) ∼= Z.

Proof. According to the theorem of Jordan-Schoenfliess there is a diffeo-
morphismϕ : S2 → S2 mappingγ to the equator. Ifφ(S) andφ(N) lie in
the same hemisphere, thenγ bounds a disk inZ = S2 \{N,S}. In this case
γ is contractible inS2 \ {N,S}. Otherwise[γ] generates the fundamental
group ofS2 \ {N,S}. ��
Lemma A.2. LetZ :=

{
(x, y, z) |x2 + y2 = 1

} ⊂ R
3 be the cylinder. Let

f : Z → R be smooth and assume thatf(x, y, z) → ∞ for z → ∞ and
f(x, y, z) → −∞ for z → −∞ uniformly in x, y. This is equivalent to
assuming thatf is proper and onto. Then for any regular valuet ∈ R the set
f−1(t) has a connected component which is a simple closed curve whose
homotopy class generatesπ1(Z).

Proof. Sincef is proper andt is regularN := f−1(t) is a closed1-
dimensional manifold, i. e. a finite union of simple closed curves. Not every
connected component ofN is contractible inZ, as otherwise for largeK it
would be possible to connect(1, 0,−K) and(1, 0,K) by a curve inZ \N .
This is impossible by the mean value theorem.

Let γ by a parametrization of a noncontractible component ofN . Ac-
cording to the previous lemma[γ] generatesπ1(Z). ��

References

1. B. Ammann, Spectral estimates on 2-tori, Preprint April 2000, Hamburger Beiträge zur
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34. J.-L. Milhorat, Spectre de l’opérateur de Dirac sur les espaces projectifs quaternioniens,
C. R. Acad. Sci. Paris1 (1992), 69–72
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Spḧare, Dissertation, Humboldt-Universität, Berlin, 1979
46. P. Topping, Towards the Willmore conjecture, Calc. Var. Partial Differential Equations

11 (2000), 361–393
47. A. Trautman, Spin structures on hypersurfaces and the spectrum of the Dirac operator

on spheres, In: Oziewicz, Zbigniew (ed.) et al., Spinors, Twistors, Clifford Algebras and
Quantum Deformations, Kluwer Academic Publishers, 1993, 25–29

48. A. Trautman, The Dirac operator on hypersurfaces, Acta Phys. Polon. B26 (1995),
1283–1310


