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Abstract. We prove lower Dirac eigenvalue bounds for closed surfaces
with a spin structure whose Arf invariant equals 1. Besides the area only
one geometric quantity enters in these estimates, the spin-cut-diaiieter
which depends on the choice of spin structure. It can be expressed in terms of
various distances on the surfaces or, alternatively, by stable norms of certain
cohomology classes. In case of the 2-torus we obtain a positive lower bound
for all Riemannian metrics and all nontrivial spin structures. For higher
genusg the estimate is given by
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The corresponding estimate also holds for fitespectrum of the Dirac
operator on a noncompact complete surface of finite area. As a corollary we
get positive lower bounds on the Willmore integral for all 2-tori embedded
in R3.

Mathematics Subject Classification (20088J50, 53C27, 53A05

1 Introduction

Relating analytic invariants of the Dirac operator such as the eigenval-
ues to the geometry of the underlying manifold is in general a difficult
problem. Explicit computation of the spectrum is possible only in cases
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of very large symmetry, see [4,6,7,10,12-14,16,18,24,33,34,36, 39,40,
42-45,47,48] for examples. In general, the best one can hope for are geo-
metric bounds on the eigenvalues. The first lower eigenvalue bounds [17],
[25],[26],[27],[28] for the Dirac spectrum require positivity of the scalar
curvature since they are based on variations of the Lichnerowicz formula
D? = V*V + scal/ 4. Refining this technique Hijazi [22, 23] could estimate
the smallest Dirac eigenvalue against the corresponding eigenvalue of the
Yamabe operator. A completely different approach building on Sobolev em-
bedding theorems was used by Lott [31] and the first author [2] to show that
for each closed spin manifolt! and each conformal clagg] on M there
exists a constar® = C'(M, [go]) such that all nonzero Dirac eigenvalues

with respect to all Riemannian metrigse [go] satisfy

2 > L
~ vol(M)2/n”

On the 2-spherd/ = S? there is only one conformal class of metrics (up
to the action of the diffeomorphism group) and we therefore get a nontrivial
lower bound for all metrics. Lott conjectured that in this case the optimal
constant should b€ = 4x. Returning to the Bochner technique the second
author showed that this is in fact true:

Theorem 1.1 ([5, Theorem 2]).Let A be any Dirac eigenvalue of thz
sphereS? equipped with an arbitrary Riemannian metric. Then

9 4m
> —.
— area(S?)

Equality is attained if and only if? carries a metric of constant Gauss
curvature.

In particular, there are no harmonic spinors$n Theorem 1.1 will be
the central tool to derive our new estimates in the present paper. Examples
[7],[41] show that such an estimate is neither possible for higher dimensional
spheres nor for surfaces of higher genus, at least not in this generality. Every
closed surface of genus at least 1 has a spin structure and a metric such that 0
is an eigenvalue, i. e. there are nontrivial harmonic spinors [18], [24]. The 2-
torus7'? has four spin structures one of which is called trivial and the others
nontrivial. Provided with the trivial spin structur&? has harmonic spinors
for all Riemannian metrics. On the other hand, for the three nontrivial spin
structures 0 is never an eigenvalue. So it should in principle be possible to
give a geometric lower bound in this latter case. The problem is that this
estimate must take into account the choice of spin structure but the Bochner
technique is based on local computation where the spin structure is invisible.
Hence new techniques are needed.



Dirac eigenvalue estimates on surfaces 425

The first estimate using information from the choice of spin structure
has been derived by the first author [1, Corollary 2.4]. On a torus with a
Riemannian metric and a nontrivial spin structure there is a lower bound for
any eigenvalua of the Dirac operator. Let’ denote Gauss curvature. Recall
that the systole is the minimum of the lengths of all noncontractible closed
curves. The spinning systole spin-§¥8) is the minimum of the lengths of
all noncontractible simple closed curves, along which the spin structure is
nontrivial. If there existy > 1 with ||K||z» - area(T?)!~(1/P) < 47, then
there is a positive numbé&r > 0 such that

2 > #
~ spin-sy$7?)?

Here C is an explicitly given expression ip, || K| z», the area, and the
systole.

The Arf invariant associates to each spin structure on a closed surface
the numbet or —1. In case of the 2-torus the Arf invariant of the trivial spin
structure is—1 while the three nontrivial spin structures have Arf invariant
1. In the present paper we prove explicit geometric lower bounds for the
first eigenvalue of the square of the Dirac operator on closed surfdces
of genus> 1 provided the spin structure has Arf invariaht Only two
geometric quantities enter, the area of the surface and an invariant we call
the spin-cut-diamete#(1/). The number (M) is defined by looking at
distances between loops in the surface along which the spin structure is
nontrivial and which are linearly independent in homology. It exists if and
only if the Arf invariant of the spin structure equadlsit can also be defined
in terms of stable norms of certain cohomology classes which depend on
the choice of spin structure (Proposition 4.1).

In the case of a 2-torus we show:

Theorem 5.1.LetT? be the 2-torus equipped with an arbitrary Riemannian
metric and a spin structure whose Arf invariant equiliet A be an eigen-
value of the Dirac operator and 16(7?) be the spin-cut-diameter. Then for
anyk € N,

2 s 2
> — .
Nz =57+ \/ Farea(T?) T R20(T7)2

The right hand side of this inequality is positive for sufficiently lakge
Hence this theorem gives a nontrivial lower eigenvalue bound for the Dirac
operator for all Riemannian metrics and all nontrivial spin structures on the
2-torus.
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Similarly, for higher genus we obtain:

Theorem 6.1.Let M be a closed surface of gengis> 1 with a Riemannian
metric and a spin structure whose Arf invariant equals 1.d(ét/) be the
spin-cut-diameter of\/. Then for all eigenvalues of the Dirac operator

we have
2 1
NE VT

T (29 +1)/area(M) O(M)

In the casgy = 1 this estimate is simpler but weaker than Theorem 5.1.
Every surface of genug > 2 admits metrics and spin structures such that
this estimate is nontrivial. But in contrast to the first theorem there are also
Riemannian metrics and spin structures on surfaces of geneisl for
which the right hand side of this inequality is negative although there are no
harmonic spinors.

If one restricts one’s attention to surfaces embeddeRinthen one
has the Willmore integrdli’ (1/) defined as the integral of the square of the
mean curvature. It is well-known that the Willmore integral can be estimated
against Dirac eigenvalues. Thus as a corollary to Theorem 5.1 we obtain

Theorem 7.1LetT? C R3 be an embedded torus. L&{7?) be its spin-
cut-diameter and letV (7?) be its Willmore integral. Then for any € N

JIWT?) > 2area (T?)  2y/area(1?)
T 5(T2)2 ko6(T?)

In the end of the paper we show that our spectral estimates also work
for noncompact complete surfaces of finite area. In this case the spectrum
need not consist of eigenvalues only. We estimate the fundamental tone of
the square of the Dirac operator which gives the length of the spectral gap
about0 in the L2-spectrum, see Theorem 8.1.

The paper is organized as follows. We start by recalling some basic
definitions related to spin structures and Dirac operators on surfaces. We put
some emphasis on the case of a surface embedd®d e then recall the
Arfinvariant and define the spin-cut-diame#én/). In Sect. 4 we show how
d(M) relates to the stable norm of certain cohomology classes. In Sects. 5
and 6 we prove Theorems 5.1 and 6.1. The central idea of proof consists
of constructing a surface of genG®ut of the given surface by cutting and
pasting. Then we apply Theorem 1.1. The estimate for the Willmore integral
is proved in Sect. 7 and in Sect. 8 we study ffespectrum of noncompact
complete surfaces of finite area.
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2 Dirac operators on surfaces

Let M be an oriented surface with a Riemannian metric. Rotatid#Olme-
grees in the positive direction defines a complex multiplicatioon 7'M .
The bundlesO (M) of oriented orthonormal frames is &h-principal bun-
dle over M. Let SM be the bundle of unit tangent vectors &h. Then
v — (v,Jv) is a fiber preserving diffeomorphism frosiM to SO(M)
with inverse given by projection to the first vector.

Let©® : S' — S! be the nontrivial double covering &f'. A spin
structure onM/ is anS*-principal bundleSpin (M) over M together with a
twofold covering mag : Spin(M) — SO(M) such that the diagram

Spin(M) x S' — Spin(M)
N\
l8x6e 16 M (1)

e
SO(M) x St — SO(M)

commutes.

Every orientable surface admits a spin structure, but it is in general not
unique. The number of possible spin structuresidrequals the number of
elements inlf (M, 7).

Example.Leti : M < R3 be an immersion of an oriented surface (not
necessarily compact, and possibly with boundary) RitoWe define a map
ix : SO(M) — SO(3) as follows: (v, Jv) € SO(M) over a basepoint
m € M is mapped tdv, Ju,v x Juv) € SO(3). Herex denotes the vector
cross product ifR3. Let Spin(M) be the pullback of the double covering
O3 : Spin(3) — SO(3), i.e.

Spin(M)

= {((v,Jv), 4) € SO(M) x Spin(3) | 1.(SO(M)) = O3(4)} .
ThenSpin(M) — SO(M) is a fiberwise nontrivial double covering. Let
7 : SO(M)xSpin(3) — SO(M ) be the projection onto the firstcomponent.

Then (Spin(M), 7|gpin(ar)) 1S @ spin structure o/, the spin structure
induced by the immersion

Lety : S' — M be an immersion or, in other words, a regular closed
curve. Then the vector fiel@yﬁ| is a section ofS M along~, which, by the

above diffeomorphism frons 1/ to SO(M), yields the sectior ;, J )
of SO(M) alongy.

Definition. The spin structuréSpin(M ), ) is said to barivial along v if
this section lifts to a closed curve #pin(M) via 6.
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This notion is invariant under homotopic deformatiomowithin the
class of immersions.

Example. The unique spin structure dR? is nontrivial along any simple
closed curve. More generally, any spin structure on a suffaéenontrivial
along any contractible simple closed curve.

Proposition 2.1. Leti : M — R? be an immersion. Lef : S — M be a
simple closed curve.ifis a parametrization of the boundary of animmersed
two-dimensional disk : D — R3 intersecting (M) transversally, then the
spin structure onV/ induced byi is nontrivial along-y.

Fig. 1. A criterion for nontriviality of the spin structure along

Proof. We can assume thgtD) andi(M ) intersect orthogonally along.
We setX (t) := i, V(1) := Ju X(t) and Z(t) := X () x Y (t). The
induced spin structure oW is trivial alongy ifand only if S' — SO(3),t
(X(¢),Y(t), Z(t)), lifts to a closed loop itspin(3). Analogously, we view
~ as a curve orj(D), we define the vector fieldg (t) := JpX(t) and
Z(t) := X (t) x Y (t). Because of the orthogonality ¢fD) andi()M) we
haveY (t) = +Z(t) andZ(t) = FY (t).

Hencet — (X (t),Y(t),Z(t)) lifts to Spin(3) if and only if ¢ ~—
(X (t),Y(t), Z(t)) lifts. The induced spin structure dd is nontrivial along
~ if and only if the spin structure oP is nontrivial alongy. This is always
true according to the previous example. O

Example.Let Z := {(z,y,2) € R?|22 + 3> = 1} be the cylinder with
the induced spin structure. Let be any simple closed curve id. We

show that the spin structure is nontrivial alonglf ~ is contractible then
the spin structure is nontrivial because of the preceeding exampjesif
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noncontractible, thefy] generates; (Z) (Lemma A.1). Hence it bounds a
disk transversal t&.

Let X M := Spin(M) x, C be the complex line bundle ovéf associ-
ated to theS'-principal bundleSpin(M ) and to the standard representation
¢+ 81 — U(1). Thisline bundle is called tHeundle of positive half-spinoys
its complex conjugat&— M := X+ M isthebundle of negative half-spinors
and their sumY M = X+t M & X~ M is thespinor bundle

Clifford multiplication consists of complex linear maps

TM @c XM — X~ M
TM @c X M — XM

denoted by ® o — v - 0. It satisfies the Clifford relations
veow-o+w-v-o+2v,w)yoc =0

forall v,w € TM ando € ¥’M over a common base point.
The Levi-Civita connection ofi’ M gives rise to a connection-1-form
on Spin(M) and this in turn defines a Hermitian connectiéron ')

Definition. TheDirac operator D is a map from smooth sections &M
to smooth sections oY M which is locally given by the formula

DY :=e) -V, ¥W+er Ve,V
for a local orthonormal framéey, e2) of TM.

It is easily checked that the definition does not depend on the choice
of the local frame and thab is a formally self-adjoint elliptic operator.
Hence, if M is closed, the spectrum db is real and discrete with finite
multiplicities.

For any smooth functiof and smooth spinof the equation

D(f#)=Vf ¢+ fD¥

holds. HereV f denotes the gradient ¢t

For more background material on Dirac operators and spin structures see
e. g.[30], [19], or [38].

To simplify notation eclosedsurface will always mean a surface which
is compact, without boundary, amdnnected
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3 Arf invariant and spin-cuts

In this section we review some properties of the Arf invariant which is an
invariant of a spin structure on a surface (see [37] for more details). For
closed oriented surfaces with spin structures whose Arf invariant eguals
we define a geometric quantity, the spin-cut-diameter, which will play an
important role in our estimate.

LetV be a2g-dimensional vector space over the figgll g € N, together
with a symplectie-formw : V' — Zy = {0, 1}. A quadratic formon (V, w)
isamapg: V — Zo, such that

q(a+b) =q(a)+ q(b) + w(a,b) a,beV.

The difference of two quadratic forms @i, w) is a linear map front’
to Z- and vice versa the sum of a linear mdp— Z- and a quadratic form
is again a quadratic form. Hence the space of quadratic fornig man
affine space oveldom(V, Zs).

Example.Let M be a closed oriented surface. lét= H; (M, Z2) and let
w be the intersection form. Fix a spin structure of/. We associate to each
spin structure a quadratic forg,:, on (V,w) as follows. Each homology
classa € Hy(M,Z) is represented by an embedding S' — M. We set
gspin (@) :== 1, if (4, J (%)) : ST — SO(M) lifts to Spin(M ), otherwise we
setgspin(a) := 0.

According to Theorem 1 of [29] the map,i,, is a well-defined quadratic
formon(Hy(M, Z3),N).

The set of all spin structures di is an affine space ovéf! (M, Zy) =
Hom(H, (M, Zs),Z2) and it is a well known fact that the map which as-
sociates to any spin structure the corresponding quadratic@smis an
isomorphism of affinéd* (M, Z,)-spaces from the space of spin structures
on M to the space of quadratic forms Vi, w) = (H1 (M, Z2),N).

Definition. For any quadratic form on (V, w) the Arf invariant is defined
by
1
Arf(q) := — —1)4@),
The Arf invariant of a quadratic form corresponding to a spin structure will
be called theArf invariant of that spin structure.

Lemma 3.1. Letg; be aquadratic form o(V;, w;) fori = 1, 2. Theng; ©qa,
given by

(@1 © g2)(v1 +v2) = q1(v1) + q(v2),
is a quadratic form on{V; @ Va, w1 @ wy). Moreover,

Arf(q1 @ q2) = Arf(q1)Arf(qo).
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The proof is a simple counting argument. O

Any 2g-dimensional symplectic vector spakewith a symplectic form
w is isomorphic to they-fold sumV; & - - - @ Vo whereVs is the standard
2-dimensional symplectic vector space. Since the Arf invariants of the four
possible choices of quadratic formsBpnare eitheil or —1 the above lemma
implies

Arf(q) € {-1,+1}

for any quadratic forng on any symplecti@,-vector space.

Proposition 3.2. Let ¢ be a quadratic form oV, w), dim V' = 2g. Then
the following statements are equivalent:

(1) Arf(q) = 1.

(2) Thereisabasisy, f1,..., ey, f;0f V suchthatu(e;, e;) = w(fi, f;) =
0, w(ei, f]) = 61’]’; andq(ei) = q(fj) =0 forall 7, 5.

(3) There are linearly independent vectoes, ... e, in V such that
w(e;,ej) = 0andg(e;) = 0 forall ¢, 5.

Proof. (2)=-(1) follows directly from Lemma 3.1.

To show (3)>(2) letey,..., e, be linearly independent vectors with
w(ei,ej) = 0 andg(e;) = 0 for all 4, j. Sincew is symplectic, we can
find fi,..., f, satisfyingw(e;, f;) = d;; andw(f;, f;) = 0 for all i, 5. If
q(fi) = 0, we setf; := f;, otherwise we puf; := f; + e;.

To see (13(3), we take a basisq, fi,...,eq4, f; Of V satisfying
w(es, fj) = dij andw(es, e5) = w(fi, fj) = 0. For everyi exactly one
of the following holds:

@) qlei) = q(fi) = qlei + fi) =1, or
(b) ¢ takes the valué at exactly two of the vectors, f; ande; + f;.

In the second case, we can assume without loss of generality(that=
q(fi) = 0. Let I be the set of all for which (a) holds. Then by Lemma 3.1
Arf(q) = (=1)#1.If (1) holds, then#I is even, hence we may assume
I:={1,...,2k}. Forj =1,...,k we replacesy;_; by ez;_1 + fo; and
e2j by ea; + faj—1. Then (3) holds. O

Example.Let M — R? be an embedded closed surface with the induced
spin structure. Then because of Propositions 2.1 and 3.2 (3) the Arfinvariant
of the spin structure is. As a consequence any immersibh— R? whose
induced spin structure has Arf invariani is not regularly homotopic to an
embedding.

Remark.In the literatur the3 spin structures on the 2-tords® with Arf
invariantl are callechontrivial spin structures and the unique spin structure
with Arf invariant —1 is called therivial spin structure.
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Definition. Let M be a closed oriented surface of gegu# cutof M is a
family of pairwise disjoint simple closed curves: S' — M,i=1,....g,
suchthafyi], ..., [y, arelinearly independent ii; (M, Z). If, in addition,

M carries a spin structure, and if the spin structure is nontrivial along each
of the;, then we cally, . .., v, aspin-cutof M.

Corollary 3.3. Let M be a closed oriented surface equipped with a spin
structure. ThenV/ admits a spin-cut if and only if the Arf invariant of the
spin structure equals.

Proof. If the Arfinvariantisl, we can find vectors,, . ..,e, € Hi(M, Zs)

for which (3) of Proposition 3.2 holds. For eaehwe choose a preimage

é; € Hi(M,Z)underthe naturalmali; (M, Z) — H,(M,Zs). We choose

é; such thatz; is primitive, i.e. there are ne; € Hi(M,Z), n > 2 with

e; = n - a;. This choice can be made such than ¢; = 0 for all i, j. We

choose a hyperbolic metrig,,,, on M and represerd; by closed curves;

of minimal length. Then the; are closed geodesics. They are simple closed

curves because tligare primitive. Sinc&; Né; = 0 andgyy,, is hyperbolic,

7v; and~y; are disjoint for; # j. The spin structure is nontrivial along each

7; because ofipin(e;) = 0. Hencey, . . ., vy, form a spin-cut of\/.
Conversely, ifyq,. .., v, form a spin-cut ofM, then[v(],...,[v4] €

Hy(M,Z) form a linearly independent set of primitive elements in

H,(M,Z). Hence their images; in H(M,Z2) are also linearly indepen-

dent. Thee; satisfy (3) of Proposition 3.2 and thus the Arf invariant is

O

Definition. LetM be aclosed surface. Let, ..., v, be acut. Theut-open
M of M is asurface with boundary, such thatthere is a smoothmap A
which is a diffeomorphism from the interior @i onto M \ [ J7_, v; and a

twofold covering from the bounda@ﬂ ontoU?z1 V;-

Riemannian metrics and spin structuresidrcan be pulled back to/.

Lemma 3.4. Letyy,...,v, be acut ofd. Then the cut-opei\7 is diffeo-
morphic to a spher&? with 2¢ disks removed. Moreover, if it is a spin-cut,
M carries the spin structure inherited fros?.

Proof. At first we prove thatV is connected. Assume thaf is not con-
nected. This would imply that the boundary of one of the connected com-

ponents of\/ is homologous to zero. Hence a nontrivial linear combination
of the[v;] vanishes which is impossible by the definition of a cut.

Since the Euler characteristic Msatisfiesx(ﬂ) =x(M)=2-2g

and M has2g boundary circles, it must be diffeomorphic to a sphéfe
with 2¢ disks removed.
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Y1 Y2

Fig. 2. The cut-operﬁ and its projection ontd/

In the case of a spin-cut, the spin structure is nontrivial along each of
the boundary components. Therefore the spin structure extends to the disk
which has been removed. Henge carries the spin structure which is the
pullback of the unique spin structure 68 under any injective immersion
M < S2. 0

Definition. Let M be a closed surface with a fixed Riemannian metric and
a fixed spin structure with Arf invariant. Let vq,...,v, be a spin-cut.
Denote byo, M, ..., 0,,M the boundary components of the cut-opin

We define theut-diameterof the spin-cut by

0(71,..-,7) == min d(@iﬂ,ajﬂ),

1<i<j<2g

whered(A, B) denotes the length of a shortest path joinih@nd B. The
spin-cut-diametenof M is defined as

(M) :=supd(1,---,7)

with the supremum running over all spin-cuts. The spin-cut-diana¢fer)
is a finite positive number depending on the surfa¢ethe Riemannian
metric and the spin structure.
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ga! Y2

Fig. 3. The cut-diameter is the length of the shortest dotted line (only representatives of 4 of
the 6 homotopy classes of lines are shown)

4 Stable norms and the spin-cut-diameter

Let M be a closed Riemannian manifold. In this section we define norms
on H;(M,R) andH!(M,R), the stable norms, and we recall some of their
properties. We will be able to express the spin-cut-diameter defined in the
previous section in terms of stable norms of certain cohomology classes
which depend on the spin structure. A good reference for stable norms is
[21], Chapter 4C. A more detailed exposition of stable norms can be found
in [15].
For anyv € H;(M,R) thestable norms defined as

k
|v]|st := inf {Z |a;| - length(cz-)}

i=1

where the infimum runs over all 1-cyc|§s:f:1 a;c; representing with
a; € R,k € NU{0} andc; : S — M smooth.
For cohomology classes ¢ H'!(M,R) we define thestable normby

st == inf [|wl|zee,

where the infimum runs over all closed smooth 1-foumgpresentingy.
These norms are dual to each other in the following sense:

lelst = sup {a(v) |v e Hi(M,R), |vllse =1},
lvllst = sup {a(v) | € H'(M,R), [lalst = 1}

We can also characterize the stable normileiM/, R) in terms of lengths
of closed curves. For any 1-cyclec H'(M,R) which lies in the image of
the mapH*(M,Z) — H'(M,R) the relation

1 . .
||v||st = inf {— length(~) ‘ ~ is a closed curve representing, n € N}
n

holds.
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If M =1T", then-dimensional torus with an arbitrary Riemannian met-
ric, then one can identifyZ, (7™, R) with the universal covering 6f". Let
d be the distance function oA (7", R) induced by the pullback of the
Riemannian metric ofi™. Burago [11] proved that there is a constéaht
such that for any,y € H,(T",R)

ld(x,y) — ||z —yllst| < C.

Roughly speaking, this result says that the stable norm is a good approx-
imation for the distancé.

The stable norm also plays a central role in Bangert's criterion [3] for
the existence of globally minimizing geodesics on the universal covering
M of a closed Riemannian manifolt/. E. g. ifby (M) > 2, and if the
stable norm orf{; (M, R) is strongly convex, then there are infinitely many
geodesics o/ whose lifts are globally minimizing geodesics oh.

Inthe special case thaf is a closed orientable surface of positive genus,
any closed curve representing anontrivigd| = [o]" € 7 (M) withn > 2
has a self-intersection. To see this,létbe the universal covering. We lift
to M /([a]) where[a] acts via deck transformations and apply Lemma A.1
for S\ {N,S} = M/{[a]). A standard curve shortening argument shows
that in this case we can characterize the stable norm of an integrakclass
as follows:

||v||st = inf {length(y) |y is a closed curve id/ representing}.

Remark.An intersection argument implies thit ||s; is a strictly convex
norm onH; (T2, R) [32]. In contrast to this, on any surface of geru
the stable norm is not strictly convex [32].

In the remaining part of this section we specialize to the ddse 72,
and we will show how the stable norm can be used to express the spin-cut-
diameter of a spin structure.

Lety : S' — T2 be a noncontractible simple closed curve along which
the spin structure is nontrivial. They] € Hi(72,Z) \ {0}. We define
o, € H(T?,7) via the relation

(a, By =VIN B, VB e H(T?Z).

Proposition 4.1. Letd (M) be the spin-cut-diameter of a 2-torus with spin
structure whose Arf invariant equals Lety, : S' — T2 be a noncon-

tractible simple closed curve along which the spin structure is nontrivial,
i.e.v is a spin-cut ofAf. Then for

dp := sup{d(v) | v is a simple closed curve homotopice}

we have 1

Sop=—
vy lst
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Proof.

(a) We showy < 1/[[cvy||st-
Lete > 0. Choose a simple closed curyehomotopic toy, such that

§(y) > (1 +¢)~16p. We cutT? along~. Then the cut-oped/ thus
obtained is a topological cylinder. Lét: [a,b] — M be a curve of
minimal length joining the two boundary componefitd/ andd, M of
M. Letcbethe image of under the mamAI — T?. Clearlylength(c) =
length(é) = 6(y) > (1 +¢)"16. Let f : M — [0, dp] be a smooth
function with the following properties:

|df| <1+ 2¢, s

f=0 onaneighborhood a#, M,

f =09 onaneighborhood 0?21\7.

Such anf can be obtained for example by a smooth approximation of
the Lipschitz function
f: M —[0,6),

x = (Sf(s?y) min {d(m, 61]\7),5(7)}.

Letw be thel-form onT? such thatif equals the pullback ab.

We now prove - oy = i[ ].

Observe thab(5(t)) = dt (f o) =0, sincef is constant along M.
Hence/. @ = 0 foranyI c S*. In particular,

G%hh=/w=0
Y

There aret1,to € S! such thaty(t1) = c(a), y(t2) = c(b). Let 3 be
the product paths := 7|y, ;) * c.
Then[y] N [B] = £1. Moreover,

i) = [ wr [w = [ar = fe0) - fleta)

=6 = iéo[ IN[B] = £do (ay, [B])-

Thereforejw] F dp - o, vanishes orjy| and on[g]. Since[y] and []
form a basis off; (T2, Z) we obtaind, - ., = £[w)].
From

|[t2 tl]

8o - [lonllse = [lw]llse < lwflzee <14 2e
we get the<-part of the equation by taking the limit— 0.
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>

Fig. 4. The curves in the proof of Proposition 4.1 (thick line)

(b) Now we provedy > 1/||cey, |[st-
We choose a smooth closed 1-fowron 72 such thafw] = ., and
|w][zse < [Jee|lst + € for smalle > 0. The cyclic subgroug|yo]) of
71 (T?) generated byy] acts via deck transformations on the universal
coveringR? of T2, Define the cylinde# := R?/{[vo]). Since[yo] gen-
erates the first cohomology &f anda.,, vanishes oty| the pullback
of the cohomology class)] = «., is trivial on Z. Hence we can find a
smooth functionf : Z — R such thatif is the pullback ofv under the
coveringZ — T2.
The function f is proper. Without loss of generality we can assume
that0 is a regular value of . Thenf~1(0) is a union of simple closed
curves. According to Lemma A.2 there is a simple closed cyrie
f71(0) whose homotopy class generatg$Z ). Choose the orientation
of v such thaty is homotopic toy,. The spin struture is nontrivial
along~, hencey defines a spin-cud/ — M, i.e. a map which is a
diffeomorphism from the interior o/ onto M \ 7(Sh) and a trivial
double covering frond M ontoy(S1).
We can identify]\7 with a closed subset df, and we can assume that
floar =0, flo,ar =1 whered, M andd, M denote the two boundary
components of//.
Letc : [a,b] — M be a curve of minimal length joining the two
boundary componen'@lﬁ andd, M. By definition we havej(y) =
length(c). It follows

1= f(e()) — f(c(a)) —/df
<length(c) [|df | L
=06(7) [[wl[ L



438 B. Ammann, C. Br

< éo (llallse +¢)-
The limite — 0 yieldsdy > /|y st 0
Corollary 4.2. The spin-cut-diameter satisfies

1

[lees [l

‘ ~ is a noncontractible simple closed curve

(M) = sup{

along which the spin structure is nontrivi}l.

5 An estimate for the 2-torus

We now come to the first main result of this paper. We give a geometric
lower bound for the eigenvalues of the Dirac operator on a 2-torus which is
nontrivial for all metrics and for all spin structures.

Theorem 5.1. Let T2 be the 2-torus equipped with an arbitrary Rieman-
nian metric and a spin structure whose Arf invariant equialket A be an
eigenvalue of the Dirac operator and 16(7) be the spin-cut-diameter.
Then for anyk € N,

> - 2 n T n 2
— k6(T?) karea(T?) = k26(T2)2°
Note that the right hand side of this inequality is positive for sufficiently
largek, but tends td for £ — co. The best bound is obtained by choosing
area(T?)
T o(T2)?

k= [4(1+\/§)

or
area(T?)

w(T?)2

Proof. Lety be a spin-cut, i. ey is a simple closed curve ifiZ along which
the spin structure is nontrivial. Assuniéy) > (1 + &)~ §(7?) for small
e>0.
We now proceed as in part (a) of the proof of Proposition 4.1. On the
cut-openT™ we obtain a functiory : 72 — [0, §(7?)] satisfying
|df| <14 2, N
f=0 on a neighborhood af, 7,
f=4(T% onaneighborhood af, 72

k:{4(1+\/§) }—H.
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—5(T?) 0 5(T?) 26(T?)

I I I I f

T2

Fig. 5. The cylinderZ and a fundamental domain

Letw be thel-form onT? such thatif equals the pullback ab.
The homotopy claspy| € 71 (7?) acts on the universal coverimRy of
T2, and
Z :=R*/{[])

is a cylinder covering™®. We pull the metric and the spin structure Bh
back to a metric and a spin structure Bn

We fix aw € 71(T?) with [y] Nw = 1. Thenw generates the deck
transformation group of the coveririgy— T72. Let7 : S — Z be a lift of
7. ThenZ \ (7(S*) Uw - 7(S')) consists of three connected components.
Two of them are unbounded and one is bounded. The closure of the bounded
component can be identified with the cut-ofgéh The functionf can then
be extended “pseudo-periodically” #, more precisely,

flw+p) =6(T%) + f(p) )
for all p € Z, wherew acts as a deck transformation gnNote that
area(f_l((t, t+ 5(T2)])> = area(T?) = area(T?).

We set
T o= 1 ([-k6(T2),0]),

Ty = f—l([o,ka(T2)]).

BothT_; andT} are isometric td& copies ofl™ glued together to a cylinder.
Similarly, we considef’_;, U T}, as a cylinder consisting @f copies ofl™.
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We glue two disks to the remaining two boundary componenis gfu T},
and obtain a surfac& of genus0. We extend the metric ofi_;, U T}, to
one onN such that the total area of the two disk glued in is smaller than
Hence

area(N) < 2k area(T?) + ¢.

By Proposition 2.1 the spin structure @hy, U T}, extends to the unique
spin structure omV.
For fixedk € Nlet X; : R — [0, 1] be a smooth function with

X1(t) =1fort <0,
Xi1(t) =0fort >k,

1
X1 < —

We setX (t) := X;(t) — X1(t + k). Then

= (1)

is a compactly supported smooth functiondmvith

dfllz _ (1+2)(1+2)
k- IVxlze < k- [ XL §(12) = 5(T2) e

We denote thé.2-norm of a spinotp on a subsetl of the manifold on which

@ is defined by
llla = o/ / o[ darea
A

If A equals the whole manifold we simply write

for all ¢.

llella =:llell-

Now let be an eigenspinor dfi? corresponding to an eigenvalief the

Dirac operator. By the preceeding lemma, the spin structure pulled back via
 extends to the unique spin structure®nThusy - 7 is a well-defined
spinor onN, and we obtain the following estimate

ID(x - 7 @)l[7, = Vx - 7" +x - D(*0)ll7.,

a . . 2
< (- Imelle, + M - wellz,)
2
@ * 2|>\|(Z *
< &Il + Il

+A2 Ix Tl

ag *
_ (k +2A|as> lelZ= + 22 [Ix - 7¢llZ . (@)
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—k k

Fig. 6. The graph of — X (¢)

In a similar manner we obtain

* CL2 *
D0 B < (F + 2l ) el + 22wl @)

From
XO*+X(t—k)*=X0)*+(1-X@1)?€[1/2,1]
for 0 <t < k we obtain

k .
5 lellFe < lx -7 ell7,um, < kllel7

which together with (3) and (4) gives

. a?
D0 7B om, < {2 (% +2Wac) +5- 22| ol

We plugx into the Rayleigh quotient and use Theorem 1.1 to get
47 < 47
2k area(T?) + e — area(N)
DO )7, o,
Ix - 7elF on,
- 2a2/k + 4\ a: + k - )\2.

k/2
Thus
T < af? n 2|A| ae )\72
2k area(T?) +¢ — k? k 2

In the limit ase — 0 we obtain
T 2 4|\
< +
karea(T?) — k20(T?)%>  kd6(T?)
Solving this inequality proves the theorem. O

+ 22
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Fig. 7. The boundanyM of a small neighborhood of a graghin R® has a large maximal
spin-cut-diameter compared to the area

6 Compact surfaces of higher genus

Using a similar technique we can also obtain a lower bound for the Dirac
spectrum on closed surfacés of higher genus.

Theorem 6.1. Let M be a closed surface of geng$> 1 with a Riemannian
metric and a spin structure whose Arf invariant equals 1.4(ét/) be the
spin-cut-diameter of\/. Then for all eigenvaluea of the Dirac operator

we have
As 2/ 1
(2g + 1) y/area(M) (M)

Note that on any closed oriented surface of gepgs 1 there is a Rie-
mannian metric and a spin structure such #at ) /area(M) is arbitrarily
large. To see this take a suitable finite grdpambedded ifR3 and letM be
the boundary (smoothed out appropriately) of a tubular neighborhofd of
of small tubular radiug > 0. ProvideM with the Riemannian metric and
the spin structure induced froR?. Then forr — 0 the spin-cut-diameter
stays bounded while the area tend6.tBy Theorem 6.1 the smallest eigen-
value of D? must then tend teo. Hence any closed oriented surface carries
a Riemannian metric and a spin structure such that the above estimate is not
trivial.

Theorem 6.1 also holds far = 1 but in this case Theorem 5.1 with
k = 2 gives a better estimate.

Proof. Let~,...,v, be aspin-cutofl/. We cutM along they; and obtain
the cut-oper/. According to Lemma 3.4\/ is a compact orientable surface
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of genusD with 2¢g boundary components. The two boundary components
of M that arise from cutting along; we denote by)! M andd2 M.

We assume that the spin-cut has been chosen such(that. . ,v,) >
(M) — e with e > 0 small.

We take2g + 1 copies ofM, denoted by%, ce 1\729. Fort=1,...,9
we glued} M; to 82 M, and8t21\79+t to &} My. The resulting surfacsy, is
of genus) with 2¢g(2¢ — 1) boundary components. We glue disks to these
boundaries and obtain a surfageliffeomorphic toS?.

The Riemannian metric ol pulls back to a Riemannian metric A
and gives rise to a smooth metric 6. We extend this metric to a metric
on S such that

area(S) < area(Sy) +e = (29 + 1) area(M) + €. (5)

Since the spin structure @ff is nontrivial along eachy;, the induced spin
structures onl/; fit together to the unique spin structure 8n
There is a smooth functiog: S — [0, 1] with the following properties:

(1) X‘]T/]o = 1'
(2) X‘S\SD = 0,

3 o < —— .,
@ IV~ < 57—
Let p be an eigenspinor of the Dirac operator bhto the eigenvalue

A. This spinor lifts to an eigenspinagr, of the Dirac operator 08y. Thus
X - o is awell-defined spinor 0f. We use it as a test spinor for the Rayleigh
quotient. Theorem 1.1 yields

tr DO o)l
arca() = - woll3.

(6)

We compute

2
D0 el < (ammage + M) el

Summing ovel yields
1 2
ID0c el < o+ 1) (Grap—gap + ) el )
The denominator of the Rayleigh quotient is estimated by

Ix - @olls > lleoll3z = llelis (@)
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Fig. 8. The surfaces for g = 2

Combining (5),(6),(7), and (8) we obtain

i <@+t ()
(29 + 1)area(M) +¢ — g (0(M) — 2¢)?
which yields in the limit: — 0

2/ 1
(29 + 1) \/area(M) 5(M)S|)\"

7 An application to the Willmore integral

The Willmore integralof an embedded closed surfateé C R? is defined
by
W(M) = / H?dvol = | H||?
M

whereH denotes the mean curvatureldf The famoudVillmore conjecture
states that for an embedded 2-torus the Willmore integral is bounded by

W(M) > 272,

This conjecture has been proven for various classes of embedded 2-tori (see
[46] for a good overview), but in full generality it is still open. We will
not resolve this problem here but our estimates on Dirac eigenvalues imply
lower bounds on the Willmore integral as well.

Let M C R? be an embedded surface of geus 1. The discussion
from Sects. 2 and 3 shows that the induced spin structuid admits spin-
cuts and hence its spin-cut-diametéd/ ) is well-defined. A spin-cut can be
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obtained by choosing disjoint simple closed curyes . . ,y, on M which
bound transversal disks i&* and whose homology classgs], . . . , [v,] in
H,(M,Z) are linearly independent.

Theorem 7.1. LetT? C R? be an embedded torus. L&t7?) be its spin-
cut-diameter and letV (7?) be its Willmore integral. Then for any € N

NDE 2area (T?)  2y/area(1?)
TS T R

T2)

Proof. In[9] it was shown that a closed surface possesses Dirac eigenvalues
A satisfying

area(M)
Combining this with Theorem 5.1 yields the result. O

This theorem yields a positive lower bound1df(7"?) for all embedded
2-tori.

Remark.From Theorem 6.1 we can obtain a similar bound, but it turns out
to be weaker than the well-known bouHd(A/) > 4.

8 Noncompact surfaces of finite area

Now we extend the bounds on Dirac eigenvalues ta/thepectrum of the
Dirac operator on a complete noncompact spin surface of finite area. The
fundamental tonef the square of the Dirac operator on a noncompact spin
manifold is given by

[l

el

where the infimum runs over all smooth spingra/ith compact support. If
A2 > 0, then theL?-spectrum ofD has a gap about 0, more precisely,

speG2(D) N (=i, Ax) = 0.

Any complete surfacé/ of finite area is diffeomorphic to a closed surface
M with finitely many points removed. The gengsf M is then also called
the genus of\/. By acutof M we mean a collection of simple closed curves
7, - -, ON M which are mapped under the diffeomorphism to a cut on
M. If M carries a spin structure, then we call the cspan-cutif the spin
structure is nontrivial along al}; just as we did for closed surfaces. If the
spin structure o/ extends to one on/, then we say the spin structure is
nontrivial along the ends

A2 = inf
®
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Given a spin-cut o one can define theut-openas before. It is now
a noncompact complete surface of finite area with compact boundary. The
spin-cut-diameteis again defined as the minimal distance of the various
boundary components of the spin-cut. Taking the supremum over all spin-
cuts yields thespin-cut-diametes (M) depending on the surface, its Rie-
mannian metric and its spin structure.

Let us show that the results for closed surfaces carry over to the complete
noncompact case without any essential changes.

Theorem 8.1. Let M be a complete surface of genw$ 1 with a Rieman-
nian metric of finite area. Led/ be equipped with a spin structure which
is nontrivial along the ends and which admits a spin-cut. (/) be the
spin-cut-diameter of/. Then

AL > 2/ 1

T (29 +1)+/area(M) (M)
If g =1, then for anyk € N

- 2 n us n 2
YT ko(M) karea(T?) = k25(M)?

Proof. Lete > 0 and letyy,...,v, be a spin-cut such that its spin-cut-
diameter satisfies

5(717"'7’79) > 5(M) —¢&.
Pick a smooth spinop on M with compact support such that
|De]?

lell?
Now we change the metric ol outside the support g and away from
the~; such that it extends té/ and such that

<) +e.

area(M) < area(M) + ¢.

Since the spin structure @ is nontrivial along the ends it extends to one
on M. Theorem 6.1 applied td/ now yields

1De]?
]2

A +E>

27 1

- (29 + 1) y/area(M) (V1s--57g)
> 2y/m B 1
" (294 1) \Jarea(M) + & S(M) —¢’

Takinge — 0 finishes the proof of the first assertion. The second part for
g = 1is shown similarly. a
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The assumption that the spin structure be nontrivial along the ends is
crucial. It has been shown by the second author [8] thatZthepectrum
of the Dirac operator on a complete hyperbolic surface of finite area whose
spin structure is not nontrivial along the ends is given by

speG.(D) =R.

A Two lemmata about cylinders

LemmaA.l. Lety: St — S?\ {N, S} be a simple closed curve in the 2-
sphere without North Pol&” and South Pol&. Then eithery is contractible
in S2\ {IV, S} or the homotopy class afgeneratesr; (S?\ {N, S}) = Z.

Proof. According to the theorem of Jordan-Schoenfliess there is a diffeo-
morphismy : S? — S? mappingy to the equator. Ify(S) andg(N) lie in

the same hemisphere, thebounds a disk ilZ = 2\ {IV, S}. In this case

7 is contractible inS? \ {V, S}. Otherwise[y] generates the fundamental
group of S?\ {N, S}. O

LemmaA.2. LetZ := {(z,y,2) |2* + y* = 1} C R? be the cylinder. Let

f : Z — R be smooth and assume thétz, y, z) — oo for z — oo and
f(z,y,2) — —oo for z — —oo uniformly inz,y. This is equivalent to
assuming thaf is proper and onto. Then for any regular value R the set
f~1(t) has a connected component which is a simple closed curve whose
homotopy class generates(Z).

Proof. Since f is proper andt is regularN := f~!(¢) is a closedi-
dimensional manifold, i. e. a finite union of simple closed curves. Not every
connected component &f is contractible inZ, as otherwise for largé& it
would be possible to conneft, 0, — K) and(1, 0, K) by a curve inZ \ N.
This is impossible by the mean value theorem.

Let v by a parametrization of a noncontractible componen¥ofAc-
cording to the previous lemmnja] generates; (2). 0
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