THE SPACE OF DIRAC-MINIMAL METRICS IS CONNECTED
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ABSTRACT. Let M be a closed connected spin manifold. Index theory provides
a topological lower bound on the dimension of the kernel of the Dirac operator
which depends on the choice of Riemannian metric. Riemannian metrics for
which this bound is attained are called Dirac-minimal. We show that the space
of Dirac-minimal metrics on M is connected if M is of dimension 2 or 4.

1. INTRODUCTION

On a closed connected spin manifold M, index theory for the Dirac operator, in
particular the family Atiyah-Singer index theorem is a strong and interesting tool to
determine non-trivial topology of the space Rpsc(M) of Riemannian metrics with
positive scalar curvature (psc metrics). However, when the index theoretical infor-
mation vanishes, it remains a notoriously difficult problem to prove connectedness
properties for Rpsc(M). For dim M = 3 a recent result by Bamler and Kleiner [6]
building on previous work by Marques [19] shows that Rps.(M) is either empty or
contractible.

The above mentioned applications of index theory rely on the fact that the Dirac
operator for a psc metric is an invertible operator. Thus, the space Riny (M) of
metrics whose Dirac operator is invertible contains Rpsc(M). As a consequence,
non-trivial homotopy groups in Rps (M), that are detected by (untwisted) index
theoretical methods remain non-trivial in Rin,(M). For example, if the index
a(M) € KO, (pt), m = dim M, does not vanish, we have Rpsc(M) ¢ Riny(M) = @.
Similarly, spectral flow of the Dirac operator, or equivalently a family index theorem,
can be used to show that Rpsc(M) and Riny (M) have infinitely many components
if m=3 mod 4, m > 7, and at least two components, if m = 0,1 mod 8. Such results
use the fact that KO,,+1(pt) is non-trivial in these dimensions m.

However, if the KO,,1(pt)-valued spectral flow between Riemannian metrics
91,92 € Rpse(M) is zero, it is difficult to show that g; and g, are in the same
connected component of Rpsc(M). The main result of this article is a proof of the
connectedness of Ry (M) in the cases m =2 and m = 4. Note that this is the first
such connectedness result for Riny(M). Our result is in contrast to the setting of
metrics with positive scalar curvature in the case m = 4: Seiberg-Witten theory tells
us that on many connected closed oriented 4-manifolds Rpsc(M) is not connected
[25, Section 5 and 6].

Date: November 24, 2025. © B. Ammann, M. Dahl, 2024. B. A. was supported by the CRC 1085
Higher Invariants (Universitidt Regensburg) and by SPP 2026 (Geometry at infinity), both funded
by the DFG
MSC 2020: 53C27 (Primary), 19K56, 58C40, 58J50 (Secondary).

1



2 B. AMMANN AND M. DAHL

If the index a(M) does not vanish, the space Rin (M) is empty, and our setting
has to be adapted. Let us recall the Atiyah-Singer index theorem for a closed spin
manifold M with its extension using Hitchin’s a-invariant in KO,,, (pt). Let R(M)
be the space of Riemannian metrics on M. For any g € R(M) we consider the spinor
bundle XM = M x, X, that arises by considering a real irreducible representations
p:Cl,, > End(X%,,) of the m-dimensional real Clifford algebra, m = dim M. Let us
summarize some classical facts about such representations, as explained and proven
e.g., in [17, Theorem 1.5.8]. In dimensions m # 3 mod 4 the choice of irreducible
representation is unique up to isomorphism (in the sense of real representations).
The representation ¥, carries a complex structure, commuting with the Cl,,-action
if m=1,2,3,4,5 mod 8, and this complex structure is unique (up to isomorphisms
in the sense of complex representations) for m = 2,4 mod 8. This implies for
m=1,2,3,4,5 mod 8 that XM can be obtained from the classical definition of the
complex spinor bundle by forgetting the complex structure, and we will identify
> M with the classical spinor bundle in this case. In the cases m = 2,3,4 mod 8
there is even a quaternionic structure on ¥,,, again unique up to isomorphisms in
the sense of quaternionic representations. Thus XM is a quaternionic vector bundle.
We write K := H for m =2,3,4mod 8, K:=C for m =1,5mod 8, and K := R for
m=0,6,7 mod 8.

The Dirac operator )Y is an unbounded K-linear operator I'(XM) — I'(XM)
with discrete spectrum. Thus all eigenspaces are (sub-)vector spaces over K. The
KO, (pt)-valued Atiyah-Singer index theorem says that

dimg ker pY — dimg ker Ip? € KO,,(pt) 2Z if m =0 mod 8

dimg ker 10 mod 2 € KO,, (pt) = Z/2 if m=1mod8
(M) = { dimg ker Ip? mod 2 € KO, (pt) = Z/2 if m =2 mod 8
dimg ker ]Di — dimg ker Y € KO,,(pt) 2Z if m=4mod8
0 € KO,,(pt) = {0} if m=3,5,6,7mod 8.

The value of a(M) does not depend on the Riemannian metric and is thus a “topo-
logical invariant”. More precisely it only depends on the oriented homeomorphism
type of M for m = 0,4 mod 8, and it also depends on the differential structure and
the spin structure if m = 1,2 mod 8, but it is always independent of the Riemannian
metric g. In terms of the classical A-genus we have a(M) = A(M) for m =0 mod 8
and a(M) = 2A(M) for m = 4 mod 8.

In all cases the index theorem provides a lower bound on dimg ker lZ)g. In fact,
let us define

‘dimR ker ]Z)Z — dimp ker ng‘ ifm=0mod8

1 ifm=1,2mod 8 and (M) #0
la(M)] =<0 ifm=1,2mod 8 and a(M) =0

|dimH ker IDi — dimy ker 12>€| if m =4 mod 8

0 if m=3,5,6,7,

then the Atiyah-Singer index theorem implies dimg ker §? > |a(M)]. We define the
space

Rmin(M) = {g e R(M) | dimg ker p? = |a(M)|}
of metrics for which the kernel of the Dirac operator attains this lower bound. In
particular Rpin(M) = Riny (M) in the case a(M) = 0.
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From now one let us assume that M is connected. Then the set Ruyin (M) is
open and dense in R(M), see [2]. Metrics in Ruyin(M) are called Dirac-minimal or
I)-minimal, metrics in the complement R(M) N Rumin(M) are called non-Jp-minimal.

The main result of this article is the following theorem.

Theorem 1.1. Let M be a closed connected spin manifold of dimension m =2 or
m=4. Then Ruyin(M) is connected.

Remarks 1.2.

(1)

Note that a corresponding statement in many other dimensions does not
hold. For example, for a(M) =0 and m = 1,3,7,0 mod 8, m >3 the second
author of this article [10] used the spectral flow for proving that Rin, (M)
has more than one connected component. This proof of disconnectedness
cannot be extended to the case a(M) # 0, however.

Consider m =2 and let v be the genus of M. We will explain that non-Ip-
minimal Riemannian metrics exist, if and only if

e a(M)=0,v>3,or

e v25.

Recall that Hitchin proved [16, end of Section 2.1 and proof of Propo-
sition 2.3] that 2dimp ker ﬁg = dimc ker lbg < v+ 1. Together with the
KO(pt)-valued index theorem we conclude that all metrics are J)-minimal
if y<2orif (M) #0 and v < 4. In other words, non-/)-minimal metrics
do not exist, when the above conditions are not satisfied.

Now let us assume v > 2. Then M carries a hyperelliptic complex
structure, see [11, Section II1.7] and we consider compatible Riemannian
metrics g. In [8] the dimension of ker )Y was calculated in this setting
by C. Béar and P. Schmutz-Schaller. It follows from their calculation that
for any integer h with 0 < 2h < v+ 1 with h mod 2 = a(M) there is a
Riemannian metric g on M with dimp ker Zpg = h. A Riemannian metric is
non-)-minimal if and only if A > 2. Thus non-IP-minimal metrics exists, if
the above conditions are satisfied.

In some cases a more geometric description can be obtained from the
theory of minimal surfaces and the spinorial Weierstrass representation.
We refer to work by Weifl, Witt and the first author [5, Example 3.15
and Theorem 3.19] where the existence of metrics with nowhere vanishing
harmonic spinors on M is discussed. For «y > 2 such a metric necessarily has
to be non-P-minimal. In the cases

e a(M)=0and vy >3,

e (M) #0,v=1mod4 and v > 5.
embedded minimal surfaces in flat 3-dimensional tori, diffeomorphic to M,
and with spin structure induced from this embedding exist. Their (spino-
rial) Weierstrass representation provides a space of harmonic spinors of
quaternionic dimension 2. As the historical origin of this representation
had attracted some interest, let us remark here that for the purpose of this
remark the original literature by Weierstrass already gives a local description
in terms of holomorphic functions which can be easily seen to glue together
to a harmonic spinor.

If M is a closed spin of dimension m, and if N is obtained from M by a
surgery of dimension k < m -2, then there is a Gromov-Lawson type surgery
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construction, that yields a map Ruyin(M) = Rmin(N) [2, 3, 14]. In the
spinorial context the condition k < m—2 plays the same role as the condition
k <m -3 does in the scalar curvature context. In the case k > 1 one can
reverse the surgery, i.e., M is obtained from N by a surgery of dimension
m—k-1<m-2, and there is a similar map Ruyin(N) = Rmin(M), and it
is expected that this is a homotopy inverse to the map given above. Parts
of this involved program were accomplished in [24, 14].

(4) So far, we have not yet commented on the regularity of the metrics in R(M),
nor on the topology of R(M). In our article, let £€{1,2,3,...} u{oo}, and
we consider R(M) as the space of Riemannian metrics of regularity C*, and
we equip R(M) with the C*-topology. We write RC[(M) for R(M) when
we want to emphasize the regularity. For £ < oo, R® (M) is an open subset
of the Banach space C*(M;T*M @ T* M) and thus a Banach manifold. For
{ = oo it is a Fréchet manifold. All our results hold for any ¢. When proving
Theorems 1.1 and 1.3 we apply the submersion theorem in the Banach space
setting and therefore restrict to £ < co. We will discuss how to extend the
results to £ = oo in Remark 4.2 and at the ends of the proofs of Theorem 1.3
and 1.1.

(5) In our discussion of scalar curvature in the introduction we assume regularity
C* with £> 2.

(6) For a C'-Riemannian metric g, the Christoffel symbols in any chart are
C°, thus it makes sense to say that g is flat around p € M if there is a
g-parallel frame defined on a neighborhood of p. This definition extends the
classical definition of flatness for metrics of regularity C2. A Cl-metric g is
called conformally flat around p € M, if there is a C*-function w: M — R
such that ug is flat around p. We call g (conformally) flat on M, if it is
(conformally) flat around any point of M.

The result of Theorem 1.1 can be refined to a result which essentially says that
R(M) N\ Rumin(M) is of codimension at least 2 in R(M). In order to turn this into
a precise statement, we have to introduce some notation.

For a subset A of R(M) we say that A has codimension at least k € Nu {0, 00}
if for every g € A there is an open subset U ¢ R(M) of g and a submanifold S of
U c R(M) of codimension > k with Anl c S. More precisely, A has codimension
at least k, if every g € A has an open neighborhood U and a submersion F:U -V,
V open in R¥, with F(A) = {0}.

In the remaining part of the introduction we assume m € {2,4}. We define the
space Rt(M) as follows. If M is diffeomorphic to T* we define

Ret(M) = {u-g|ueC*(M;Rs) and g is a flat metric}

and Ret(M) = @ if M is not diffeomorphic to T%. The set Rt (M) is a closed subset
of R(M) of infinite codimension, see Proposition 2.3.

Note that ker )Y is a quaternionic vector space. In the following we write
w € CI(T'M) for the real volume element, i.e., if (e1,...,ey) is a positively oriented
orthonormal basis of some (T, M,g,), then w|z =e1°**€y. The action of w on

spinors anticommutes with I) as m is even.

For m = 4 we have w+w = 1 and thus the action of w on spinors induces a
decomposition XM =3, M & ¥_M into quaternionic subspaces for the eigenvalues
+1 of the idempotent w. Be aware that the standard conventions imply that w = -1
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on ¥, M and w = +1 on ©_M. This yields a decomposition ker )¢ = ker )Y @ ker Ip?
and we have

A(M)/2 = dimg ker )Y — dimy ker I’ .
Thus, using |a(M)| = |A(M)/2| we see that for g ¢ R(M) and
d := min{dimyg ker ID‘Z, dimp ker lZ)g} e Ny

we have dimg ker 107 = |a(M)| + 2d.

For m =2 we have w+w = -1, and thus the map ¢ —» w-yi is an idempotent as
well. Its associated decomposition ker ]Dg = ker Di ® ker in is however no longer
invariant under multiplication with j. In fact, one easily checks that multiplication
with j defines antilinear isomorphisms ker ﬂ)z - ker IP? and ker Ip? — ker ﬂ)z Then
dimy ker lZ)g = dimc ker ]Di = dim¢ ker 12)? and it turns out that dimpy ker ]Dg mod 2
can be identified with the index ao(M) of M in KOz (pt) = Z/2Z. We write |a(M)| =1
if this index is nontrivial and |a(M)| = 0 if it is trivial. Then there is a number
d € Ny, such that dimg ker 0? = [a(M)] + 2d.

In both cases m =2 and m = 4 we define

Ra(M) ={g e R(M) \ Re(M) | dimg ker )? = |o(M)| + 2d}.
In particular Rpin (M) = Ro(M) and we have the disjoint union
R(M) = Rcf il L[ Rd(M)

deNg
Note that Reg(M) = Up<i<q Ri(M) is an open subset of R(M).

Theorem 1.3. Let M be a closed connected spin manifold of dimension m = 2
orm=4. Then for deN, d>0, Rq(M) has codimension at least 2 in Req(M).
Furthermore Ree(M) has infinite codimension in R(M).

Note that we do not expect the codimension estimate for R4(M) to be sharp
except in the case m =2, d = 1 and in the case that we have m =4, d =1 and that M
is “almost” a product of surfaces. Improved estimates in the other cases shall be
the subject of a future article. However, the codimension 2-result is what we need
for the connectedness of Ruyin (M) which is the topic of this article.

For the following investigations we expect that the following statement will
be helpful. This theorem is also an important intermediate step for the proof
of Theorem 1.3, but it allows finer information about the behavior of harmonic
spinors deforming into eigenspinors with small eigenvalues. It does not only provide
information about the eigenvalues, but also about the way a kernel may break up in
eigenspaces for different small eigenvalues.

In the following, we denote the H-valued L2-scalar product on L?(X9M) by

{5 D

Theorem 1.4. Let (M,go) be a closed connected Riemannian spin manifold of
dimension m =2 or m =4. In the case m =4 we additionally assume go ¢ Ree(M).
Let B.(0) be the open ball of radius € around 0 in R?.

Suppose that we have non-zero ® € ker ID‘T and U € ker P°. In the case m =2
we additionally assume that (@, V) =0. Then there is some € >0 and a smooth
family g.: B:(0) - R(M) with g5+ € R(M), go,0 = go with the property:
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For any smooth extensions @5, e T(X M), Uy, e T(X9' M), (s,t) € B-(0), with
oo =P and Voo =V we have for any choice of (s,t) € R*~ {(0,0)}:

d

E <<wgmy.rt (I)‘rs,rt l:[/‘rs,‘rt >>]HI +0.

7=0

Note that the condition {®, U}y = 0 is automatically satisfied for m =4, but not
for m = 2, see Paragraph 2.2.

The structure of the article is as follows. In Section 2 we collect some preliminaries
and introduce some notation and some conventions used in the article. In particular,
we recall work by Bourguignon and Gauduchon [9] that gives the variational formula
for the Dirac operator under variations of the metric. The essential term in the
associated variational formula is the energy-momentum tensor which will lead to
further investigations in Section 3. Here we analyze the energy-momentum tensor
at a non-IP-minimal metric, and we will find a formula, namely Equation (8) that
establishes a relationship between the energy-momentum tensor associated to a pair
of harmonic spinors (®, ¥) and the gradient of |®|?/|¥[2. This formula will be used
in Section 4 for proving Theorem 1.4, and then we deduce Theorem 1.3. The proof
of Theorem 1.1 is then given in Section 5.

2. NOTATION AND PRELIMINARIES

2.1. Scalar products on quaternionic vector spaces. See also [15, Chapter 2].
We follow the convention that vectors in quaternionic vector spaces are multiplied
by quaternionic scalars from right. However we allow real scalars to be multiplied
both from the left and from the right.
Let V be a quaternionic vector space. An R-bilinear map ¢:V x V - H is
H-sesquilinear if we have

glohw) =X-g(v,w), g(v,wX) = g(v,w)A.

for every v,w € V and every A € H. We then also say that g is an H-sesquilinear
form. Such a form is called H-hermitian if for every v,w e V'

g(w,v) = g(v,w), (1)
and positive definite if for every v € V'~ {0} we have g(v,v) > 0.
Lemma 2.1. A positive definite H-sesquilinear form is H-hermitian.

Proof. Let I € span{i, j,k} be one of the complex structures in H, i.e., I? = -1. Let
m1:H — C be the orthogonal projection with 7;(1) =1, 7;(I) =i. Then n;0g is a
positive definite sesquilinear form on (V,I) in the complex sense. From classical
linear algebra over C we know that 7y o g is hermitian, i. e., (1) is satisfied for ;o g
instead of g. Applying this for I € {4, j, k} implies (1). O

An H-scalar product or a quaternionic scalar product is defined as a positive
definite H-sesquilinear form.

Example 2.2. We write X* = XT = YT for X e H". On H" we have the standard
scalar product

(X,Y)u = XY
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If (-, -)u is a quaternionic scalar product on V, then (-, .) = Re(., )y is a real

scalar product and it satisfies

(. 0)m = (o, ) = (@, 0-i) i (o0 j) -G = (o ¥ k) - K (2)
for any ¢, € V. Further, multiplications by 4, j and k are isometries with respect
to (-, -).

Conversely, if (., .) is a real scalar product such that i, j and k are isometries,
then we may use (2) to define a quaternionic scalar product with (-, -) = Re(-, - )u.
In particular, (-, )y is H-sequilinear.

Note that in both settings we then also have

(. ) = (o, 00) +{p-i,0) i+ (o jJ,0) -+ (- K, 9} - k.

Let V be a quaternionic line. For ¢ € V' with [¢)| = 1 one checks that (1,4 -, -
J,® - k) is an orthonormal real basis of the quaternionic line V. As a consequence
we get

[P =0 (0, 0) + it i,0) + - {1, 0) + - k(¥ k, )
:w'<¢7(¢0>H
for any @, eV.

3)

2.2. Spinors and quaternionic structure. We want to recall some facts about
spin structures and spinors on oriented manifolds M of dimension m.

In the literature several equivalent definitions of spin structures may be found. In
differential geometry one often defines a spin structure by considering the principal
SO(m)-bundle Pso(M) of positively oriented orthonormal frames, and then one
defines a spin structure as an equivariant double cover Pspin(M) - Pso (M), [12, 17].
This type of spin structure, called a metric spin structure, has the drawback that it
depends on the choice of a Riemannian metric g. An alternative way is to consider
the non-trivial double cover GL, (m,R) - GL, (m,R) instead and to define a spin
structure as an equivariant double cover Pgg (M) - Pgr, (M), where Par,, (M)
is the principal GL,(m,R)-bundle of positively oriented frames. This type of
definition allows us to define a spin structure on an oriented manifold, in a way
independent of a Riemannian metric, and will be called a topological spin structure
or later simply a spin structure. It is classically known since many decades that
there is a 1-to-1 relation between isomorphism classes of metric spin structures
and isomorphism classes of topological spin structures, but as this occasionally led
to misunderstandings, it is helpful that details of this construction were worked
out e. g., in [26] and [3, Sec. 2.2] Let us also briefly mention that in topology spin
structures are often defined as a lift of the classifying map M — BSO for TM to a
map M — BSpin whose homotopy classes again provide an equivalent definition;
this point of view will not be used in this article.

Thus we will assume that M carries a (topological) spin structure in this sense, and
that it defines — for each Riemannian metric g —a spin structure g ; (M) — Pg, (M)
in the usual Riemannian sense. Using a representation p: Spin(m) - GL(V) on a
vector space V' we define an associated bundle VIM := PSgpin(M )%, V.

We will use this construction for spinor bundles, where V = 3,,, is an irreducible
linear Clifford module. An irreducible linear Clifford module is a representation
p:Spin(m) - GL(X,,) that extends to an irreducible representation of the Clifford
algebra C1(R™). This definition comes in different flavors, in particular one may
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choose different structures on ¥,,. For example one may consider X, as a real
vector space, and then one may show that 3, has a scalar product for which
Clifford-multiplication is skew and thus p acts isometrically. The scalar product
on Y, is then uniquely determined up to scaling, thus we obtain an equivalent
definition if we view X,,, as a Euclidean vector space and if we consider representation
p:Spin(m) — O(%,,,) instead. Similarly, connectedness of Spin(m) allows to reduce
to representations p: Spin(m) - SO(X,,).

For each representation p: CI(R™) - End(%,,) the associated bundle construction
provides an associated spinor bundle 9P M = PSgpin(M) X, Xpm. The Spin(m)-
equivariance of the map p leads to an action of CI(T'M,g) on X9°M, see again
[12, 17] for details. For p € M, the action of X € CI(T,M, g) on ¢ € %9 M is denoted
by X -, and we also use X +Y to denote the multiplication of X,Y € CI(T'M, g).

For a given Riemannian metric g, we obtain the real spinor bundle X7 M — M.
Note that the isomorphism type of the real representation p: Spin(M) - GL(%,,), of
real orthogonal representation p: Spin(M) - O(X,,) is not unique for m = 3 mod 4,
but it is unique for our main cases of interest, namely m € {2,4}. We refer to [17, I
§5] for a discussion of such representations.

Similarly, we may require that ¥, is a vector space over the complex numbers C
or over the quaternionic numbers H, and we obtain XM and XM in the same way
by replacing real, bilinear scalar products by complex or quaternionic sesquilinear
scalar products. We denote the result real, complex or quaternionic fiberwise scalar
product as (-, -)g, (-, - )c, or (-, -)m. By integrating with respect to the Riemannian
volume element we obtain for K € {R, C,H} the K-sesquilinear L?-scalar product on
the space of L%-sctions L*($% M), denoted by (-, - Jx. In the notation of formulas,
we suppress the Riemannian volume element in integrals for the sake of readability.

Now we specialize to the cases m = 2,4 mod 8 in which there is up to isomorphism
one irreducible real (resp. complex, resp. quaternionic) representation in XX (resp.
¥C  resp. BE) of CI(R™), see [17, T §5] and [12, Section 1.7]. As these spaces
have the same real dimension, there is a complex isomorphism ¥ — $¢ and a
real isomorphism E;Cn - ¥® When passing to the associated bundles we obtain
isomorphisms ¥4 M — I M - X M, “forgetting” multiplication with j and then
with ¢, which we use to identify these bundles.

The real volume element in the Clifford algebra is defined as w=ej-eg*-- 2y, €
CI(T, M), for a positively oriented orthonormal basis (e, ). For m even, the complex
volume element is defined as we =i"/?w € Cl(T,M) ®r C, for a positively oriented
orthonormal basis (e,). Because of wg =1, it defines a grading ©%4M = SIM & X9 M
in the sense of complex bundles with scalar product.

For m = 4, quaternionic multiplication commutes with wc, and thus this splitting
also holds in the sense of quaternionic bundles with H-sesquilinear scalar product.
In particular, this implies that (@, ¥ )y =0 for ® e ['(XIM) and ¥ e T(XIM).

For m = 2, quaternionic multiplication by j anti-commutes with wc; thus ¢ M and
Y9 M are no longer quaternionic bundles, and multiplication by j defines complex
anti-linear isomorphisms LM — XYM and XM — ¥IM. In this dimension
O eT(X{M) and ¥ e I' (X9 M) satisfy (@, V)¢ =0, but e. g., for ¥ :=P - j we have
(@, @)u = @] 5.

2.3. The Dirac operator. The Riemannian metric g on M gives the Levi-Civita

connection V¥ on TM, and an associated connection-1-form on P§,(M). This
connection-1-form lifts to a connection-1-form on any spin structure Psgpin(M ) and
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finally induces a connection, denoted by V9 as well, on any associated spinor bundle
Y9IM, see [17, 1T §4] and [12, Section 3.1].
The Dirac operator P*:T(SIM) - T(X9M) is defined by

n
]Dg@ = Z ea'vga@
a=1

where (e,) is a locally defined orthonormal frame. The Dirac operator is a self-
adjoint elliptic densely defined unbounded operator Ip?: L2(X9M) — L*(X9M). As
such, since M is closed, the Dirac operator is a Fredholm operator with unbounded
real spectrum consisting of eigenvalues with finite-dimensional eigenspaces, see [17,
I1I §5] and [12, Chapter 4]. In particular, the kernel ker )Y is a finite-dimensional
vector space. A harmonic spinor is an element of ker 10?.

When we use the C'-topology on R(M), any metric has a neighborhood U
such that the eigenvalues of Ip? for g € U can be numbered by functions that are
continuous in g, see for example [22].

2.4. Identifying spinor bundles and Dirac operators over spaces of Rie-
mannian metrics. On a spin manifold M with a fixed (topological) spin structure,
not only the connection and the Dirac operator but even the construction of the
spinor bundle depends on the choice of a Riemannian metric on M in a subtle
way. The dependence of the choice of metric was investigated by Bourguignon
and Gauduchon in [9]. Given two metrics g, h, there is an endomorphism b7 of
TM such that h(b7-,b7-) =g(-,-), and by is symmetric and positive definite (with
respect to both metrics). The endomorphism bi is uniquely determined by these
properties and gives a map P{, (M) — P, (M). Further, this map lifts to a map
B P (M) — Pé"pin(M ) between the Spin(m)-principal bundles defined by the
same topological spin structure. This, in turn induces linear maps

BIYIM - X"M,  BET(SIM) —T(Z"M)

of the associated spinor bundles and their spaces of smooth sections. The map
is by construction a fiberwise isometry of the Hermitian metrics. We recalibrate
this map by considering the volume elements dV9 and dV" = ( I )2dVY of g
and h, where ffj is a positive function. Following [18] we define the rescaled map

BY = (f2)71B7, and we get another vector bundle isomorphism 3:39M — P M,
which is not a fiberwise isometry, and an isometry

BY:LA(29M) — LA(2"M)
of the corresponding Hilbert spaces of L2-sections. We have ﬂ!’; o 39 =id and
Bg o Bi =id. However, one has to be aware of the effect that in general for three
Riemannian metrics g, h, k we have 8} 035 # 37 and QZOBA,{’L * BZ, so the identification
given by BZ is not transitive.

Having fixed a Riemannian metric go, the map g — Bgo defines trivializa-
tions E;‘ni"M = Hgesym? TxM YIM - X50M x Symi TyM for any p € M and
L= Hyerp(ny L*(B9M) — L*(29°M) x R(M), and the latter map is a fiberwise
isometry of Hilbert spaces from the bundle L — R(M) to the trivial L?(%9% M)-
bundle over R(M). Because of the lacking transitivity for 37, this identification

depends on the choice of gg. This way to trivialize the Hilbert bundle L - R(M) is
worked out by Maier [18], relying on [9].
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For understanding the results of this article, it is sufficient to work in Maier’s
trivialization. However, let us briefly sketch in the next subsection a more conceptual
picture, which may turn out to be important when considering, for instance, higher
order terms in a perturbative expansion.

2.5. The universal spinor bundle. In this subsection we describe a natural
connection V on the Hilbert bundle L - R(M). As the concepts of this sections
are not required for the logical structure of the article, we will only sketch this
connection. However this connection will motivate our notation used later on.

In the following, let X9M — M be the real, complex or quaternionic spinor
bundle over a Riemannian spin manifold (M, g). Note that for p € M, the fiber
Y9 M, viewed as a Clifford module with compatible scalar product only depends on

gp € Symi Ty M and thus one may define the universal spinor bundle
sevM= 1] [ UM - SymiT M,
peM geSym? T M

see [4, 5, 20] for details. This bundle carries a natural partial connection, where
“partial” means that only differentiation along the fibers of the bundle Sym?r "M —
M is defined. Now, the Hilbert bundle L — R (M) inherits a connection V from the
partial connection on X"*VA/. This connection is tightly related to the maps By
discussed above from [9]. On the one hand, if we have ¢ € T'(L) (i.e., ¢p, € L*(X"M),
depending differentiably on h € R(M)) and k € T,R(M) = I'(Sym® T* M), then we
have the formula

VkQO = 5g+tksog+tk .

d

dt |t:0
On the other hand, 7 is the parallel transport along ¢t — (1 —t)g + th with respect
to V. Note that this parallel transport does not preserve the L?-scalar product
on L, thus V is not compatible with the L?-metric.

Recall from the preceding subsection, that Maier recalibrated the map Bz to BZ
in order to preserve the fiberwise L2?-scalar product {-,-) on L —» R(M). In the
same spirit we define a recalibrated connection V on L by the formula
Bg+tk

R d
Viep=—

dt |t=0 Pg+tk -

This connection also arises from a recalibrated connection on X"V A/ — S'ym?r T"M.
As BZ preserves the L2-scalar product, the connection V is compatible with the
fiberwise L%-metric on L - R(M), i.e.,

N, ) = (Vep, ¥) + (o, Vi)
for ¢, € L2(X9M) and k € I'(Sym® T* M) = T,R(M).
This construction may be done for real, complex and quaternionic spinor bundles
and we get forgetful isomorphisms

E]l}lﬂIllvM > Z(lémVM > Eﬂ%nlv

by forgetting multiplication with j and i respectively. In dimension 2 and 4 these
are isomorphisms of complex vector bundles and real vector bundles, respectively.

At the end of this excursion on the universal spinor bundle, let us mention that
for a given background metric gg € R(M) we have four connections on the bundle
L - R(M). The first is defined by the Bourguignon-Gauduchon trivialization



THE SPACE OF DIRAC-MINIMAL METRICS IS CONNECTED IN DIMENSIONS 2 AND 411

4, the second by Maier’s trivialization /3’30, the third and the fourth are the
connections V and V. We will prove a transversality statement for a section of
a related bundle over R(M) at a metric go where the section vanishes. This

transversality statement is unaffected by the choice of connection.

2.6. Variation of the Dirac operator with respect to the metric. From now
we specialize to dimension m = dim M € {2,4} for which the spinor bundles are
quaternionic line bundles.

For the bundle L - R(M) defined above, let End(L) - R(M) be the bundle
of densely defined fiberwise H-linear operators. The Dirac operator I g  Ip’
is a section of this bundle, and due to its symmetries it is even a section of the
subbundle End>2 (L) - R(M) of self-adjoint operators anti-commuting with the
real volume element w.

It is a classical fact, see [18, Prop 2.4] for a reference, that )" is differentiable in
the sense that we may derive I)* with respect to the induced connection V in any
direction k € T,y R(M) = T'(Sym* T* M), and the derivative is given by

d Ago+tk go+tk A 1w 1(7:
il (B0 D™ 0B ) = 23 3 Mewen)ea V) - § (div ) -
- P

where (e1,-+-, ep) is a locally defined orthonormal frame, for k € T'(Sym?® 7*M). In
view of the interpretation of 37 as the parallel transport for the connection vV we

write the left hand side of this equation as (d%| Dg)(k), S0 we obtain
9=90

GRS

The locally defined orthonormal frame (eg, -, e,,) allows taking traces by con-
traction, e. g., for A € End(TM) and «, 3 € Q' (M) we have

> k(ea,ep)eq VP — 3 div k- (4)
b=1

a‘7

tr(A) = i 9(A(ea)rea), t19(a® B) = o, B)g = i a(ea)Bea).

In particular, the right hand side does not depend on the choice of the frame.
However, the right hand side of these equations is only defined on the domain of the
corresponding frame. In the following we abuse notation by interpreting the formulas
of the right hand sense as formulas on M. The above expression then means that
for any p € M and any frame (eq, -, €,,) defined on an open neighborhood U, of p,
the formula holds on U,. Obviously, in order to check this, it is sufficient to prove
that for any p € M this holds for some frame defined on some U, 3 p.

2.7. Codimension of conformally flat metrics.

Proposition 2.3. Let M be a manifold of dimension at least 4. Then the set of
locally conformally flat metrics has infinite codimension in R(M).

Proof. In dimensions at least 4, a Riemannian metric is locally conformally flat if
and only if its Weyl curvature tensor vanishes identically. This fact, which is usually
formulated for smooth metrics, easily extends to metrics of regularity C'* for ¢ > 2,
an even holds in some weak sense for ¢ = 1.

Let g° be locally conformally flat. Let p € M. In a neighborhood U of p there are
coordinates x® centered at p in which g%, = ud,, for some positive C*-function wu.



12 B. AMMANN AND M. DAHL

Let wqeqp be a constant tensor with all the pointwise symmetries of a Weyl tensor,
and set

1 n

Yoy =0ap— 5t X D, Waeapt x?

3 c,d=1
where x is a cut-off function with support in U and x = 1 near p. Set g, = uy?,.
Then the (4,0)-Weyl curvature tensor of g* is W9 = uW?" and at the center of
coordinates we have W' (D) acds = tWacap- Let W, be the dimension of the space
of pointwise Weyl tensors in dimension n. Then the above construction provides
a W,-dimensional space of perturbations g' which deform ¢° away from being
conformally flat, so the space of locally conformally flat metrics has codimension at
least W,,. Repeating the argument with any finite number points p with disjoint
neighborhoods U we see that the codimension is unbounded and thus infinite. [

3. DEFORMATIONS OF HARMONIC SPINORS

In the preceding section we discussed the variation of the Dirac operator with
respect to the Riemannian metric. We will now define the variation of the projection
of the Dirac operator to the bundle spanned by small eigenspinors.

3.1. The kernel projection. Let M be a closed connected spin manifold of
dimension m = 2 or m = 4. Let go € R(M) have dimgker P = |a(M)| + 2d
for some d € Ny, thus dimc ker D% = 2ja(M)| + 4d. We choose ¢ > 0 such that
spec(P?) n (-¢,e) c {0}.

Further, we consider an open star-shaped C!-neighborhood U of gy € Ryq(M)
in the space of Riemannian metrics with respect to the C'-topology, such that
€¢ spec(ﬂ)g) for all g e U. We take U small enough, so that for all g € U the
Dirac operator Ip? has precisely 2|o(M)| + 4d complex eigenvalues (counted with
multiplicity) in (-¢,¢). For g e U let

Ky= @ ker(P?-)).
Ae(-¢,e)
Then K = Ugq Ky is a quaternionic vector bundle over U of quaternionic rank
|a(M)] + 2d, see e.g., 23, Theorem 4.5.2]. The bundle K — U is a subbundle of
finite rank of the bundle Ly, ~Uu, introduced in the previous section, and the L?-
orthonormal projection L - K is given by the spectral projection W?—s,s) projection

to the sum of eigenspinors of §? with eigenvalues in (-¢,¢). The L?-norm on L gives
a fiberwise real scalar product (-, -) on K that is invariant under multiplication by
a € H with |a] = 1, and it extends to a quaternionic scalar product {-, - )g.

Be aware that K is not a parallel subbundle of L, but — as usual — we obtain
an induced connection on the bundle K by projecting to K, i.e., 71"?_5)5) oV is the
induced connection on K. Then the inclusion ¢x: K — L is not parallel, its derivative
at go, applied to ¢ € K is given by

(Z L)WZ o - oV @ = w0 oY
dg |go dglgo (e2) " dglg,” T CeeElilee) Ty
thus, the covariant derivative of ¢ at go is a bilinear map from I'(Sym? T* M) x K
to the orthogonal complement of K in L.

The splitting X9M = YXIM & 29M and the metric g € U induce a splitting
K = K, ® K_. These summands are quaternionic subbundles for m = 4, but only

()
go
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complex subbundles for m = 2. In the case m = 2 multiplication by j maps K.
to K.
We now define the bundle £ - U by

&, =End’ (K,),

w-ac

that is the fiber £, at g is the space of self-adjoint endomorphisms of K, that anti-
commute with the real volume element w = ej-eo or w = ey *e2-e3- ey respectively,
where (e1,...,en) is alocally defined positively oriented orthonormal frame. Then &€
inherits a connection, also denoted by V, from the connection on K, defined above.
When we restrict the Dirac operator )’ for each g € U to K,, we obtain an
endomorphism of K, and due to its self-adjointness and its anti-commutativity
with the volume element, restricting to K, for each g € U yields a section of £. Thus,
for the inclusions tx: K — L and L%:Kg - Lg

D =P oucU~E g | =D o,

is a section of €. The zero locus of this section is U N Rq(M). We denote the
covariant linearization at gg of this map by

x,

A

P:: ’]Tg v

(EE’E) o @ (]Dg o L%):F(Sym2 T*M) — &,,. (5)

g0

In order to study the regularity and codimension of the zero level set U N Ry (M)
of IP" we will show that rank Ip" := dimg image P < 1 at gy implies that the metric go
is conformal to a flat torus, so otherwise rank )" > 2 which implies that codim (U n
Ra(M)) 22, unless gg € Ree(M). This implies that the codimension of R4(M) in
R(M) is at least 2.

3.2. The energy-momentum tensor. We define @, 4 € I‘(Sym2 T*M ® H) by
the formula

Qo (X, V) = =L ({X - Vyp,00), + (V- Vo, 00), + {0, X Ty to)y + (0, Y - Vi) )-
For pe M, X,Y € T,M, ¢, € ker I, and a quaternion \ we have

Q¢'>\7¢(Xv Y) =\ Qtpﬂl’ (Xv Y) and Q%WA(X’ Y) = Q@ﬂ/’ (Xv Y) A

The tensor @, is obtained by differentiating | M(Zﬁgw, ©)r with respect to the
Riemannian metric, see [7, Sec. 6] for details. Such functionals often arise in action
functionals in physics, and the differential is thus called an energy-momentum tensor.
For instance, it provides an energy-momentum term in Einstein’s field equations
arising from fermions. We extend this terminology to the unsymmetrized variant
@,y used in this article.

Lemma 3.1. If ¢ and v are harmonic spinors, then tr Q. = 0.
Proof. From the definition of the map ) we have
Quw (X, X) = =1 ({(X - Vxo, ¥} + (9, X - Vxt)u).

For an orthonormal basis (eq, ..., e, ) of the tangent space we calculate

tr Q= i%,uea,ea) - ()i + (o, D)) = 0. 0
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3.3. Variational formula. We will now use the variational formula from Sub-

section 2.6 in order to express the operator P defined in (5) in terms of the
energy-momentum tensor ¢, .

Lemma 3.2. For o, e ker P* and h e T'(Sym®T* M) we have
(P =4 [ 5 ({ea Ve 0y + v Teuin )y
a,b=1

+ (@7 €q* Veb’l/))H + <907 €p* Veaqu)H) ‘ h(eaa Bb) dVgo
= {(Qpp i hu
Proof. We compute

P=rl o~ (e L-’;()
e ° (Z

=10 (

In the last equality we used the fact that %| ¢ has values in the orthogonal
go

IDQ)OLK

complement of K in L which is the image of 7/ Thus 1Yo d%| 1 is also
go

( o, E]U[6 oo)

in the image of 77 After postcomposing this with W‘(qfag) we obtain 0.

( o0,—g|u[e,0)"

Since ¢, 1 € ker Ip?° this gives

(P(R)p: Phm = (7<) IDg(h)w V) <<d% golpg(h)S@71/}>>H

Since IP? is self-adjoint, its variation is also self-adjoint, and (4) gives us

(PO v = 5((o) B/ (o wh+ (o o) B (h))a)

-3 [ 3 (ea Ve hah(easer) V- L [ (@0 b, g dve
M a,b=1 M

m

1 [Y (0ear Ve bhahlene) AV - L [ (g, div he ) dve

a,b=1
= _i -[M ; (<ea ’ Veb(pvwhﬂ + <907 €q - Vebd})H) h(ea, eb) dvee.

By symmetrizing in a and b we conclude the lemma. ([l

3.4. Calculations with the energy-momentum tensor.

Lemma 3.3. Let Z be a (locally defined) vector field with |Z|=1. Then
W20zl - |p[POz? = 8Re((Z v, 0)u - Qpu (2, 2)).

Proof. Using (3) we compute
WiPe =12 ¢lp = Z-9{Z -y, o)m, (6)
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and with this
W12 0zlel = 2([¢1 ¢, Vz0)m = 2Re({[0* ¢, V29 )m)
= 2Re((Z-1/)(Z'1/)7 o), VZSO)H)
=2Re ((Z-0, @) (20, V20)u)

(7)
= 2Re({Z0. @) (4.2 20}z
= -2Re ((Z¥,0)u - ($,Z-V20)u)
=-2Re({Z1, 0)u - (Z*Vzp,V)u) .
Similarly,
(602107 = ~2Re ((Zp,00a - (¢, 2+ 7))
=2Re((Z-4, 0)u(p, Z-VzY)u) -
We finally get
0zl ~ [0zl
=2Re((Zv,0)u- ((Z- V20,0 + (0, 2V 1)) )
= -8Re((Z+9, )u- Q(Z, Z2) (. 1)) O

Now we fix ® € ker P~ {0} and ¥ € ker P? < {0}. On the set Uy = {x € M|
U(x) + O} we set G = grad %. Using Lemma 3.3 we compute

2 2 2 9 9
9(G,Z) =0y (|(I)| ): [P20z|P|* - |®|?02|¥|

W[ Ny

- % Re((Z'\II, Py - Qa,w (2, Z))

4. PROOFS OF THEOREM 1.3 AND THEOREM 1.4

The proof of Theorem 1.4 essentially relies on the following proposition.

Proposition 4.1. Let (M, go) be a closed connected Riemannian spin manifold of

dimension m =2 or m =4. For any nonzero ® € ker ngO’+ and nonzero W € ker ngO’_
with (@, ¥ )y =0 the map

Ppy:T(Sym®>T*M) - H, hw (P(h)®,¥)y (9)

has (real) rank at least 2, unless m =4 and (M, go) is conformal to a flat torus, i. e.,
unless go € Re(M).

Proof. We assume that the map Py, defined in (9), has rank at most 1. Due to
Lemma 3.2, this means that the image of

D(Sym? T*M) > H, e (b Quo)a= [ (7 Quw)a dvol®

is contained in RX for some A € H, |\| = 1. By replacing ¥ by WA~} we obtain
(h, Qs v )u € R and all h. Thus Qg y is a (real-valued) section of Sym® T* M.



16 B. AMMANN AND M. DAHL

From (8) we obtain

8
9(G,Z) = G Re((Z'W7¢)H ‘Qa,w(Z, Z))
8
|\I/‘4 (Z v q)> Q‘I),‘Q(sz)
8
- g Qu(Z.2)- (V. 2),
where V e I'(T'M) was defined as the vector field satisfying
gV, X)=(X-U,®)g forall X eTM. (10)
This yields
9(G, 2)-|2] = |\I,|4QW<Z 2)-9(V, 2) (11)

for arbitrary Z e I'(T'M).
By choosing Z 1 V we conclude that G is of the form fV for some f e C=(M).
From (11) we then obtain

9V, 2) 121 = 9(G,2) |2 = —=Qew(Z,2)-g(V, Z)

I\I’I4
for arbitrary Z, so for all Z not perpendicular to V we get
[-9(2,2) = —Qaw(Z,2). (12)

I‘I/I4
By a density argument, we see that (12) holds for all Z € TM. Taking the trace of
both sides and using Lemma 3.1 we get

mf=f-trg=—mtrQsw =0,

thus Q¢ v =0 and G = fV =0.

In the case m = 4 we conclude from G =0 that there is a constant p > 0 so that
|®| = p|¥| on Uy. We rescale ¥ so that |®| = |¥| on Uy. Since Qq,v = 0, the sequence
of Lemmas 8.2-8.7 in [18], followed by Lemmas 8.10-8.11 and Proposition 8.12 in
[18], tells us that (M, go) is conformal to a flat torus.

In the case m = 2 we also conclude that there is a constant p > 0 so that |®| = p|¥|
on Uy. Recall that on surfaces we can identify ¥_M ®c ©_M = A0 M = (TcM)*.
It is thus a bundle with a holomorphic structure. Furthermore multiplication with j

I\I’I4

provides an isomorphism $_M = £, M. A spinor ¢ = ¢, +¢_ with ¢, € T(S.M) is
harmonic if and only if ¢, -j and ¢_ are holomorphic sections of ¥, M. We conclude
that M \ Uy is finite. The condition |®| = p|¥| implies that there is a function
f:Ug — S* c C such that
®-5=V-pf

on Uy. The holomorphicity of ®-j and ¥ implies that f is also holomorphic, the
singularities in M c Uy are removable, and finally we see that f is constant, say
f=AX Thus ®-j=¥-p\ and thus (@, U)y = —||®|?- jp) # 0 in contradiction to the
assumption in the proposition. [

Proof of Theorem 1.4. According to the preceding proposition, the map given in
(9) has rank at least 2. We may thus choose S c H, dimg .S = 2 in the image of this
map. Let 7% be the orthogonal projection H — S.
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Let again B.(0) be the open ball of radius ¢ in R?. We extend go to a map
g.:B:(0) > R(M), such that its differential at 0 € B.(0) intersects with the kernel
of the map Pp ¢ given in (9) only in 0, i. e., we have image dg,’0 nker Py ¢ = {0}.

We extend ® and ¥ to smooth sections of K, and K_ along g., i.e., for all
(s,t) € B:(0) we have @, , € K+|g:s . and U, 4 € K_|gs » depending smoothly on (s,t).
Theorem 1.4 then follows from Pfoposition 41. ([

Remark 4.2. The proofs above prove Proposition 4.1 and Theorem 1.4 for any
regularity C* on T'(Sym? T* M) and R(M), £ e Nu {co}, and the associated maps
Ps w, g., ®., U, etc. are continuously differentiable for any £.

Proof of Theorem 1.3. Let gg € Rq(M) for some d € N, d > 0. In particular, in the
case m =4, (M, go) is not conformal to a flat torus.

In the case m = 4, the condition d > 0 implies that we have ker D% £ 0 and
ker Dgo’_ # 0. We choose arbitrary non-zero & € ker ZZ)gO’+ and ¥ € ker ]Dgo’_. They
satisfy (@, W) = 0 as ker D% and ker P are orthogonal quaternionic subspaces.
Thus ® and ¥ satisfy the assumptions of Theorem 1.4.

In the case m =2, ¥, M — M is a complex line bundle, and thus the restriction
of (-, )m to ¥y M — M takes values only in C, which yields a hermitian scalar
product (-, -)c. The condition d > 0 implies that dimg ker D” = dimg ker P77 > 2.
Thus we choose non-zero ®, & € ker P with 0 = (®, )¢ = (®, B )x. Then ® and
U = & - j satisfy the assumptions of Theorem 1.4.

Assume £ < oo. Theorem 1.4 allows us to apply the submersion theorem in the

Banach manifold setting, see [1, Theorem 3.5.4] and conclude that gy has an open
neighborhood U in R<y(M), such that

U-S, goa° (((l])gd), ‘II))H)
is a submersion.

This submersion maps U N (Rq(M)) to 0. This implies that R4(M) is of codi-
mension at least 2 in R¢y(M) and thus in R(M). The statement of Theorem 1.3
follows.

For regularity C'°, we observe that the constructions lead to continuously differ-
entiable maps

9.:B=(0) > RE (M)
and to similar maps ®, and ¥, mapping to spinors with C*-regularity. Combined
with the inclusion RE™ (M) - RC (M), for £ < oo and similar inclusions for spinors,
the results follows for regularity C*. (]

5. PROOF OF THEOREM 1.1
We define 6(g) as
d ifgeRqy(M
a(g)= |1 o RO
oo if 'AS Rcf(M) .
This is an upper semi-continuous function on R(M), i.e., for a sequence g, — g we
have 6(g) > limsup,_,+ 0(ga). Theorem 1.1 follows from Theorem 1.3 by applying

the following lemma to M = R(M) with the function ¢ from above. Recall that
Ret(M) has infinite codimension in R(M) due to Proposition 2.3.
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Lemma 5.1. Let M be an open and connected subset of a Banach space, together
with an upper semi-continuous function 6: M — N:=Nu {0,00}. For deN we write
Mg =5"1(d). We assume that My is open and dense in M and that for d >0 every
Mg has codimension at least 2 in M in the sense of the introduction. Then M is
connected.

Proof. We define Mg = Ujcq M; = 072({1,2,...,d}) and Mo, = M.

Let us assume that My is not connected. Thus we find disjoint non-empty open
subsets U; and Us of My (and M) such that Uy Uy = M. As M, is dense we have
M =My =U, ull. As M is connected, it follows that Z = U; Ny is non-empty.
Obviously Zn Mg = @. Let do = min{6(Z)} € N, and we assume 6(go) = do > 1 for
some gg € Z. By upper semi-continuity there is an open neighborhood Vy of gg in M,
such that Vy ¢ M.q,.

As My, has codimension at least 2 in M, there is a submanifold N of codimen-
sion 2 of a possibly smaller open neighborhood V; ¢ Vy of g, such that Mg, nVy c M.

For any «a € {1,2} we see that U, nV; is open. It is non-empty as g € U,. Thus
U, NV, cannot be contained in the codimension 2 submanifold N'. We choose
Jo € (UsynV1)NN. Because N has codimension 2, we find a path 7:[1,2] = V"N ¢
M(go-1y With (1) = g1 and 7(2) = go. Now I, = v (Uy) is a closed subset of
[1,2] containing « for a € {1,2}, and

Lol =y (U vlz) =y (M) =[1,2].

Thus there is tg € I} N Iy, i.e., y(t1) € Uy nUy = Z. By construction of dy we have
6((t1)) = do which contradicts v(t1) € Mc(g,-1)- O

Proof of Theorem 1.1. If £ < oo, then Theorem 1.1 follows from Theorem 1.3 by
applying the lemma to M := RC (M) with the function ¢ from above.

In the case £ = oo we have to face the problem that smooth functions constitute
a Fréchet space and not a Banach space. One way to solve this is to replace the
theorems on Banach spaces we used, by appropriate theorems on Fréchet spaces.
More precisely, we could use versions of the submersion theorem, that still hold
in the Fréchet space setting for £ = co, see [21, Proposition III.11] and [13, around
Theorem D].

However, it seems easier to us to argue as follows. For a given pair of metrics in
RET(M) c RC' (M) we already know that there is a continuous path in RC' (M)
connecting this pair. This continuous path can be approximated by a piecewise
linear path of metrics, with break points consisting of C'*°-metrics and sufficiently
short linear pieces. Since the end points of this path and the break points are
all C*°-metrics, the piecewise linear path is a path in R¢" (M), and Theorem 1.1
follows in this case as well. O
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