Geometrie für Lehramt Gymnasium: Übungen

Universität Regensburg, Sommersemester 2025 Prof. Dr. Bernd Ammann, Roman Schießl, Raphael Schmidpeter

Abgabe bis Mittwoch, 28.5., 14:00 im Zettelkasten

Übungsblatt 5

1. Aufgabe (4 Punkte).

Seien $A, B \subset \mathbb{R}^n$ affine Unterräume. Wir nennen ein Paar $(a_0, b_0) \in A \times B$ abstandsminimierend, falls für alle $a \in A, b \in B$ gilt $d(a_0, b_0) \leq d(a, b)$, d.h. falls gilt

$$d(a_0, b_0) = \inf_{a \in A, b \in B} d(a, b).$$

Wir haben in Übungsblatt 4 Aufgabe 2 gesehen, dass das Infimum angenommen wird, also ein Minimum ist.

- a) Zeigen Sie: $(a_0, b_0) \in A \times B$ ist genau dann abstands-minimierend, falls $b_0 a_0 \perp A$ und $b_0 a_0 \perp B$.
 - Bemerkung: Eine Implikation wurde bereits auf Blatt 4 gezeigt!
- b) Sei $(a_0, b_0) \in A \times B$ abstands-minimierend, $v \in V_A, w \in V_B$. Zeigen Sie, dass die beiden folgenden Aussagen äquivalent sind:
 - i) $(a_0 + v, b_0 + w)$ ist abstands-minimierend
 - ii) v = w

Folgern Sie, dass die Abbildung

$$V_A \cap V_B \to \{(a_1, b_1) \in A \times B \mid (a_1, b_1) \text{ ist abstands-minimierend}\}$$

 $v \mapsto (a_0 + v, b_0 + v)$

wohldefiniert und eine Bijektion ist.

- c) Folgern Sie: Sind A und B windschief, dann gibt es genau ein abstands-minimierendes Paar $(a_0, b_0) \in A \times B$.
- 2. Aufgabe (4 Punkte).

Sei $A \subset \mathbb{R}^n$ affiner Unterraum.

a) Folgern Sie aus Aufgabe 1, dass es für jedes $x \in \mathbb{R}^n$ genau ein Element $a_0 \in A$ gibt mit $a_0 - x \perp A$. Wir schreiben dieses eindeutig durch x und A bestimmte Element a_0 als $P_A(x)$.

Dies definiert eine Abbildung

$$P_A: \mathbb{R}^n \to \mathbb{R}^n,$$

 $x \mapsto P_A(x),$

die orthogonale Projektion auf A.

b) Zeigen Sie: Eine Abildung $f: \mathbb{R}^n \to \mathbb{R}^k$ ist affin linear genau dann, wenn für alle $x, y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ gilt

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

- c) Folgern Sie aus b), dass P_A affin lineare Abbildung ist. Bemerkung: Benutzen Sie die Eindeutigkeit aus Teil a)!
- d) Zeigen Sie $P_A^2 = P_A$ und $A = \{x \in \mathbb{R}^n \mid P_A(x) = x\} = P_A(\mathbb{R}^n)$.

3. Aufgabe (4 Punkte).

Betrachten Sie für $0 < b \le a$ die folgende Ellipse $E := \{(x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$. Zeigen Sie, dass eine Konstante R > 0 existiert, sodass für alle $(x, y) \in E$

$$d\left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} c \\ 0 \end{pmatrix}\right) + d\left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} -c \\ 0 \end{pmatrix}\right) = 2R$$

wobei $c = \sqrt{a^2 - b^2}$.

Tipp: Quadrieren Sie
$$d\left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} -c \\ 0 \end{pmatrix}\right) = 2R - d\left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} c \\ 0 \end{pmatrix}\right).$$

4. Aufgabe (4 Punkte).

Bezeichne wie immer $\langle .,. \rangle_{n,1}$ dass Minkowskiskalarprodukt auf \mathbb{R}^{n+1} und $\langle .,. \rangle_n$ das Standardskalarprodukt auf \mathbb{R}^n . Definiere $S^{n-1} := \{x \in \mathbb{R}^n \mid \langle x, x \rangle_n = 1\}$, die n-1-dimensionale Sphäre.

a) Zeigen Sie, dass die Abbildung

$$\Psi: \{-1, +1\} \times \mathbb{R}^n \to \{ y \in \mathbb{R}^{n+1} \mid \langle y, y \rangle_{n,1} = -1 \}$$
$$(s, x) \mapsto \begin{pmatrix} s\sqrt{1 + \langle x, x \rangle_n} \\ x \end{pmatrix}$$

wohldefiniert und ein Homöomorphismus (d.h. bijektiv und sowohl Ψ als auch Ψ^{-1} sind stetig) ist.

b) Zeigen Sie, dass die Abbildung

$$\Phi: \mathbb{R} \times S^{n-1} \to \{ y \in \mathbb{R}^{n+1} \mid \langle y, y \rangle_{n,1} = 1 \}$$
$$(t, x) \mapsto \begin{pmatrix} \sinh(t) \\ \cosh(t) \cdot x \end{pmatrix}$$

wohldefiniert und ein Homöomorphismus ist. $Erinnerung: \cosh(t) := \frac{e^t + e^{-t}}{2}; \sinh(t) = \frac{e^t - e^{-t}}{2}$

c) Zeichnen Sie die Mengen $\{y \in \mathbb{R}^{n+1} \mid \langle y, y \rangle_{n,1} = 1\}$ und $\{y \in \mathbb{R}^{n+1} \mid \langle y, y \rangle_{n,1} = -1\}$ im Fall n = 1.