Geometrie für Lehramt Gymnasium: Übungen

Universität Regensburg, Sommersemester 2025 Prof. Dr. Bernd Ammann, Roman Schießl, Raphael Schmidpeter

Abgabe bis Mittwoch, 14.5., 14:00 im Zettelkasten

Übungsblatt 3

1. Aufgabe (4 Punkte).

- a) Seien $p = (p_1, ..., p_n)^T$, $q = (q_1, ..., q_n)^T$, $r = (r_1, ..., r_n)^T$ drei Punkte in \mathbb{R}^n . Zeigen Sie folgendes Kriterium: p, q, r liegen genau dann auf einer affinen Geraden, falls $(1, p_1, ..., p_n)^T$, $(1, q_1, ..., q_n)^T$, $(1, r_1, ..., r_n)^T$ linear abhängig sind in \mathbb{R}^{n+1} .
- b) Seien $p,q,r\in\mathbb{R}^2,\,p\neq q$. Zeigen Sie: $r\in G_{p,q}$ genau dann wenn

$$\det(r, q - p) = \det(p, q - p).$$

c) Seien $G_{p,q}$ und $G_{r,s}$ zwei nicht-parallele affine Geraden in \mathbb{R}^2 . Oder äquivalent: gegeben seien $p,q,r,s\in\mathbb{R}^2$ und seien p-q und r-s linear unabhängige Vektoren. Dann berechnet sich der Schnittpunkt $z\in\mathbb{R}^2$, d. h. $\{z\}=G_{p,q}\cap G_{r,s}$, als

$$z = \frac{1}{\det(q - p, s - r)} \left(\det(r, s - r) \cdot (q - p) - \det(p, q - p) \cdot (s - r) \right)$$
$$= \frac{1}{\det(q - p, s - r)} \left(\det(r, s) \cdot (q - p) - \det(p, q) \cdot (s - r) \right).$$

Hinweis: Nutzen Sie b).

2. Aufgabe: Kriterium für affin-lineare Unabhängigkeit (4 Punkte). Für $k \in \mathbb{N}$ gilt: $p_0, p_1, \ldots, p_k \in \mathbb{R}^n$ sind affin linear abhängig, genau dann, wenn es ein $(a_0, \ldots, a_k)^T \in \mathbb{R}^{k+1} \setminus \{0\}$ gibt mit

$$0 = \sum_{i=0}^{k} a_i p_i \text{ und } 0 = \sum_{i=0}^{k} a_i.$$

3. Aufgabe: Schwerpunktsatz (4 Punkte).

Seien $a, b, c \in \mathbb{R}^2$ drei affin linear unabhängige Punkte. Wir setzen

$$m_a := \frac{1}{2}(b+c), \quad m_b := \frac{1}{2}(a+c), \quad m_c := \frac{1}{2}(a+b)$$

(die Mittelpunkte der Verbindungsstrecken). Zeigen Sie, dass die Geraden G_{a,m_a} , G_{b,m_b} und G_{c,m_c} sich in einem gemeinsamen Punkt s(a,b,c) schneiden (dem sogenannten Schwerpunkt des von a,b,c aufgespannten Dreiecks). Hier ist $G_{x,y}$ wie immer die Verbindungsgerade durch x und y.

Zeigen Sie weiterhin, dass $s(a, b, c) = s(m_a, m_b, m_c)$ gilt.

4. Aufgabe: Kleiner Satz von Desargues (4 Punkte).

Seien F, G, H drei parallele, paarweise verschiedene Geraden und $a, a' \in F, b, b' \in G, c, c' \in H$, sodass

$$G_{a,b} \parallel G_{a',b'}$$
 und $G_{b,c} \parallel G_{b',c'}$.

Zeigen Sie, dass dann auch $G_{a,c} \parallel G_{a',c'}$ gilt.

Hinweis: Parallelogramm-Satz