Geometrie für Lehramt Gymnasium: Übungen

Universität Regensburg, Sommersemester 2025 Prof. Dr. Bernd Ammann, Roman Schießl, Raphael Schmidpeter

Abgabe bis Mittwoch, 7.5., 14:00 im Zettelkasten

Übungsblatt 2

Für eine Matrix $A \in \mathbb{R}^{n \times n}$ und $b \in \mathbb{R}^n$ definieren wir Aff $_{b,A}$ als die Abbildung

$$\mathbb{R}^n \to \mathbb{R}^n,$$

 $x \mapsto Ax + b.$

 $\operatorname{Aff}(\mathbb{R}^n) := \{ \operatorname{Aff}_{b,A} \mid A \in \mathbb{R}^{n \times n} \text{ ist invertierbar}, b \in \mathbb{R}^n \}$ nennen wir die Menge der affinen Bewegungen.

1. Aufgabe (4 Punkte).

a) i) Bestimmen Sie die Dimension des affinen Unterraums

$$A := \langle (1,4,2,3)^T, (0,6,2,6)^T, (3,5,10,6)^T, (2,7,10,9)^T \rangle$$

von \mathbb{R}^4 . (1 Punkt)

ii) Bestimmen Sie den Schnitt von A mit

$$B := \langle (0, 10, 2, 13)^T, (1, 12, 2, 17)^T \rangle.$$
 (1 Punkt)

- b) Sei $p_0 := (1, 2), p_1 := (2, 3), p_2 := (3, 2).$
 - i) Zeigen Sie, dass (p_0, p_1, p_2) eine affine Basis von \mathbb{R}^2 bildet. (1 Punkt)
 - ii) Geben Sie Ihre Matrikelnummer an. Die letzten beiden letzten Ziffern nennen wir a. (0 Punkte)
 - iii) Finden Sie $A \in \mathbb{R}^{2\times 2}$, $b \in \mathbb{R}^2$, sodass Aff_{b,A} den Punkt p_0 auf (a+4,a+4), den Punkt p_1 auf (2a+6,3a+6) und den Punkt p_2 auf (3a+6,5a+4) abbildet. (1 Punkt)

2. Aufgabe (4 Punkte).

Eine Teilmenge $T \subset \mathbb{R}^n$ nennt man kollinear wenn es eine affine Gerade in \mathbb{R}^n gibt, auf der mindestens drei Elemente von T liegen. Ist die Eigenschaft nicht erfüllt, so nennt man T nicht-kollinear.

- a) Wenn T höchstens 2 Elemente besitzt, ist dann T notwendigerweise nicht-kollinear oder notwendigerweise kollinear?
- b) Besitzt T genau drei Elemente, $T = \{p_0, p_1, p_2\}$, so zeigen Sie: (p_0, p_1, p_2) ist affin linear unabhängig genau dann, wenn T nicht-kollinear ist.
- c) Angenommen T besitzt mehr als drei, aber endlich viele Elemente. Ist dann die Aussage in b) immer noch richtig? Beweisen Sie diese Aussage oder geben Sie ein Gegenbeispiel an.
- d) Angenommen T ist endlich und nicht-kollinear: Wieviele affine Geraden in \mathbb{R}^n enthalten 2 Punkte von T?

3. Aufgabe: Affine Dimensionsformel (4 Punkte).

Für zwei affine Unteräume $A_1, A_2 \subset \mathbb{R}^n$, $A_1 \neq \emptyset \neq A_2$, betrachten wir deren *Verbindungs-raum* $\langle A_1 \cup A_2 \rangle$, dies ist also der von A_1 und A_2 erzeugte affine Unterraum.

a) Seien $p_1 \in A_1$ und $p_2 \in A_2$ Stützvektoren. Zeigen Sie: der zu $\langle A_1 \cup A_2 \rangle$ zugeordnete Untervektorraum ist gegeben durch

$$V_{\langle A_1 \cup A_2 \rangle)} = \{ v_1 + v_2 + \lambda (p_2 - p_1) \mid v_1 \in V_{A_1}, v_2 \in V_{A_2}, \lambda \in \mathbb{R} \}$$

b) Folgern Sie die affine Dimensionsformel:

$$\dim(\langle A_1 \cup A_2 \rangle) = \begin{cases} \dim(A_1) + \dim(A_2) - \dim(A_1 \cap A_2), & \text{falls } A_1 \cap A_2 \neq \emptyset \\ \dim(A_1) + \dim(A_2) - \dim(V_{A_1} \cap V_{A_2}) + 1, & \text{falls } A_1 \cap A_2 = \emptyset. \end{cases}$$
(1)

Erinnerung: Für Untervektorräume $U_1, U_2 \subset \mathbb{R}^n$ wissen Sie aus der Linearen Algebra, dass $\dim(\langle U_1 \cup U_2 \rangle) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$ gilt.

- 4. Aufgabe (4 Punkte).
 - a) Die affine Bewegung $f \in \text{Aff}(\mathbb{R}^2)$ erfülle, dass $f(G) \parallel G$ gilt für jede affine Gerade G in \mathbb{R}^2 . Zeigen Sie, dass ein $\lambda \in \mathbb{R} \setminus \{0\}$ und ein $b \in \mathbb{R}^2$ existiert, sodass $f(x) = \lambda x + b$ für alle $x \in \mathbb{R}^2$.
 - b) Seien F, G zwei nicht parallele affine Geraden in \mathbb{R}^2 mit Schnittpunkt p. Seien $a, a' \in F \setminus \{p\}$ zwei unterschiedliche Punkte, und seien H bzw. H' zwei (von F verschiedene) affine Geraden durch a und a', die ebenfalls nicht parallel zu G sind. Seien s bzw. s' die Schnittpunkte von H bzw. H' mit G. Zeigen Sie, dass $H \parallel H'$ genau dann gilt, wenn es ein $f \in \text{Aff}(\mathbb{R}^2)$ gibt mit f(p) = p, f(a) = s, f(a') = s'.

