Differential Geometry II: Exercises

University of Regensburg, Summer Term 2024
Prof. Dr. Bernd Ammann, Julian Seipel
Please hand in the exercises until Tuesday, July 16, 12:00 in

Exercise Sheet no. 13

1. Exercise (4 points).

Let $n \in \mathbb{N}_{\geq 2}$. Show that there exists a complete Riemannian metric g on \mathbb{R}^{n} with sectional curvature $K(M, g)>0$.
2. Exercise (4 points).

Let G be a finite generated group and $\Gamma \subset G$ be a finite generating set. Let dist' be a left-invariant metric on G. We denote with dist ${ }^{G, \Gamma}$ the word metric with respect to Γ. Show:
a) There exists a constant $C>0$ such that

$$
\operatorname{dist}^{\prime}(g, h) \leq C \cdot \operatorname{dist}^{G, \Gamma}(g, h)
$$

holds for all $g, h \in G$.
b) There exists a constant $C>0$ such that

$$
N_{\text {dist }^{\prime}}(C \cdot R):=\#\left\{h \in G \mid \operatorname{dist}^{\prime}\left(h, \mathbb{1}_{G}\right) \leq C \cdot R\right\} \geq N_{\Gamma}(R)
$$

for all $R \in \mathbb{N}$ holds. The function $N_{\Gamma}(R)$ is given by $\#\left\{g \in G \mid \operatorname{dist}^{G, \Gamma}\left(g, \mathbb{1}_{G}\right) \leq R\right\}$.
3. Exercise (4 points).

Consider the upper half-plane model of the hyperbolic space, i.e.

$$
\mathbb{H}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}
$$

with metric $g_{x}^{\mathbb{H}^{n}}=\frac{1}{x_{n}^{2}} \cdot g_{\text {eucl }}$ for $x \in \mathbb{H}^{n}$. Show:
a) The map $f: \mathbb{H}^{n} \rightarrow \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \mapsto \log \left(x_{n}\right)$ is a generalized distance function.
b) The map f from b) is the Busemann function for all geodesics of the form $\gamma(t)=$ $\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n} \cdot e^{t}\right)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{H}^{n}$.
4. Exercise (4 points).

We consider the 3-dimensional discrete Heisenberg group, i.e.

$$
\mathcal{H}_{3}:=\mathcal{H}_{3}(\mathbb{Z}):=\left\{\left.M_{x, y, z}=\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{Z}\right\}
$$

Denote with $X=M_{1,0,0}, Y=M_{0,1,0}$ and $Z=M_{0,0,1}$ and consider the subset $\Gamma=\{X, Y\}$ of \mathcal{H}_{3}. Show:
a) We have $X^{a}=M_{a, 0,0}, Y^{b}=M_{0, b, 0}, Z=M_{0,0, c}$ and $X^{a} Y^{b} Z^{c-a b}=M_{a, b, c}$. Conclude that Γ is a generating set of \mathcal{H}_{3}. Bonus: Write down the Cayley graph Cay ${ }^{\mathrm{H}_{3}, \Gamma}$.
b) Let $r, s, t \in \mathbb{Z}$. We have $\left[X^{r}, Y^{s}\right]=Z^{r s}$. Conclude from that $d^{G, \Gamma}\left(Z^{r s+t}, \mathbb{1}_{\mathcal{H}_{3}}\right) \leq$ $2|r|+2|s|+4|t|$.
c) Let $k, a, b, c \in \mathbb{Z}$ and choose an $r \in \mathbb{N}$ with $r^{2} \leq|k| \leq(r+1)^{2}$. We write $k= \pm r^{2}+t$ with $|t| \leq \frac{|2 r+1|}{2}$. Conclude that there exists constants $C, D \in \mathbb{R}$ such that

$$
d^{G, \Gamma}\left(X^{a} Y^{b} Z^{k}, \mathbb{1}_{G}\right) \leq C \cdot(|a|+|b|+\sqrt{|k|})+D .
$$

d) Conclude from the statements above that, for $R>0$ large enough, we have

$$
\left\{X^{a} Y^{b} Z^{k}| | a\left|,|b|, \sqrt{|k|} \leq \frac{R}{2 C}\right\} \subset \bar{B}_{\Gamma}(R)\right.
$$

Show that there is a constant $c>0$ such that $N_{\Gamma}(R) \geq c R^{4}$ for sufficiently large R.
e) (B2 bonus points) Show that there is a constant $C^{\prime}>0$ with the property: if $M_{a, b, k} \in$ $\bar{B}_{\Gamma}(R)$, then $|a|+|b| \leq R$ and $|k| \leq C^{\prime} \cdot R^{2}$. Then show that N_{Γ} grows polynomially of degree 4.

