Differential Geometry II: Exercises

University of Regensburg, Summer Term 2024
Prof. Dr. Bernd Ammann, Julian Seipel
Please hand in the exercises until Tuesday, July 9, 12:00 in the

1. Exercise (4 points).

Let (M, g) be a complete Riemannian manifold and $(W, h) \subset(M, g)$ a compact Riemannian submanifold. We denote with $\mathcal{N}_{M} W=(T W)^{\perp} \subset T M$ the normal bundle of W in M. Moreover we denote with $\exp ^{\mathcal{N}_{M} W}:=\exp _{\mid \mathcal{N}_{M} W}^{M}: \mathcal{N}_{M} W \rightarrow M$ the exponential map associated to the normal bundle.
a) Show that there exists an $\epsilon>0$, such that $d_{X} \exp ^{\mathcal{N}_{M} W}$ is invertible for all $\|X\|<\epsilon$.
b) Assume moreover that $W^{n-1} \subset M^{n}$ is a hypersurface of M. Let ν be a unit normal field and S the shape operator of the embedding. Let $c:(-\epsilon, \epsilon) \rightarrow W$ be a smooth curve in W with $c(0)=p \in W$ and $\dot{c}(0)=X \in T_{p} W$. Show that the Jacobi field $J=\frac{d}{d s} \gamma_{s}$ associated to the geodesic variation

$$
\gamma_{s}(t):=\exp _{c(s)}^{\mathcal{N}_{M} W}\left(t \cdot \nu_{c(s)}\right)
$$

satisfies $J(0)=X$ and $\frac{\nabla}{d t} J(0)=-S(X)$.
2. Exercise (4 points).

Let (M, g) be a complete Riemannian manifold and $(W, h) \subset(M, g)$ a compact submanifold. Denote $\mathcal{N}_{M} W$ and $\exp ^{\mathcal{N}_{M} W}$ as in Exercise 1.
a) Show that there exists an $\epsilon>0$ and an open neighbourhood $W \subset U$, such that $\exp ^{\mathcal{N}_{M} W}$ maps the set $\left\{X \in \mathcal{N}_{M} W \mid\|X\|<\epsilon\right\}$ to U.
b) Assume that $W^{n-1} \subset M^{n}$ is a hypersurface with unit normal field ν and (M, g) is flat. Show that $d_{\lambda^{-1} \nu_{p}} \exp ^{\mathcal{N}_{M} W}$ is not invertible, where $p \in W$ is a point and λ is an eigenvalue of the shape operator S_{p} at p.
3. Exercise (4 points).

Let (M, g) be a Riemannian manifold, whose sectional curvature $K=K(M, g)$ satisfies the bounds:

$$
0<\Lambda_{1} \leq K \leq \Lambda_{2}
$$

Let $\gamma:[0, l] \rightarrow M$ be a geodesic parametrized by arclength. We define

$$
d:=\min \left\{t>0 \mid \gamma(t) \text { is conjugated to } \gamma(0) \text { along } \gamma_{[[0, t]}\right\} .
$$

Use the Rauch Comparison Theorem to show:

$$
\frac{\pi}{\sqrt{\Lambda_{2}}} \leq d \leq \frac{\pi}{\sqrt{\Lambda_{1}}}
$$

4. Exercise (4 points).

Let (M, g) be a compact Riemannian manifold, which has no conjugated points. Recall that we have defined the function

$$
\begin{aligned}
c: S M & \rightarrow(0, \infty], \\
X \in S_{p} M & \mapsto \sup \left\{t>0 \mid d\left(p, \exp _{p}^{M}(t X)\right)=t\right\} .
\end{aligned}
$$

Show that there exits a closed geodesic of length $2 \cdot \min _{X \in S M} c(X)$. Hint: Use a similar argument as in Exercise 3 of sheet 11.

