Differential Geometry II: Exercises

University of Regensburg, Summer Term 2024
Prof. Dr. Bernd Ammann, Julian Seipel
Please hand in the exercises until Tuesday, July 2, 12:00 in the

Exercise Sheet no. 11

1. Exercise: Cartan-Hadamard (4 points).

Let (M, g) be a connected and complete Riemannian manifold. We assume that the sectional curvature is non-positive, i.e. $K(M, g) \leq 0$. Let $p \in M$ and denote with $\exp _{p}: T_{p} M \rightarrow M$ the Riemannian exponential map at p.
a) Use the Proposition 4.1 from the lecture to show that there are no conjugated points.
b) Show that the Riemannian manifold $(N, h):=\left(T_{p} M, \exp _{p}^{*} g\right)$ is complete.
c) Show that $\exp _{p}:\left(T_{p} M, \exp _{p}^{*} g\right) \rightarrow(M, g)$ is a Riemannian covering.
2. Exercise (4 points).

Let V be a real vector space. We consider $R(t), S(t), S_{0} \in \operatorname{End}(V)$ which comply to the Riccti equation

$$
\begin{align*}
\dot{S}(t) & =R(t)+S^{2}(t) \tag{1}\\
S(0) & =S_{0}
\end{align*}
$$

a) Assume that $R(t)$ and S_{0} is symmetric. Show that the solution $S(t)$ is also symmetric.
b) Assume moreover $\frac{\nabla}{d t} R(t)=0$. Compute a solution of the system (1).
c) Consider the case $V=\mathbb{R}^{2}$ and $R(t)=\left(\begin{array}{cc}t+2 & t-2 \\ t-2 & -t+2\end{array}\right)$. Find the solution of the $\operatorname{system}(1)$ for $S_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
3. Exercise (4 points).

Let (M, g) be a connected Riemannian manifold without any pair of conjugate points (e.g. if $K \leq 0$). For $p \in M$ define

$$
C_{p}:=\{\tilde{q} \in M \mid \text { There exists more than one shortest curve between } p \text { and } \tilde{q}\} .
$$

We also assume that $q \in Q_{p}$ satisfies $d(p, q)=\min \left\{d(p, \tilde{q}) \mid \tilde{q} \in C_{p}\right\}$.
a) Let $X_{1} \neq X_{2} \in T_{q} M \backslash\{0\}$ and assume that X_{1} and X_{2} are linearly independent. Show that there exists a $Y \in T_{p} M$ with $\left\langle Y, X_{1}\right\rangle<0$ and $\left\langle Y, X_{2}\right\rangle>0$ and $\angle\left(Y, X_{1}\right)=\angle\left(X_{2}, Y\right)$.
b) Let $\ell:=d(p, q)$ and let $\gamma_{i}:[0, \ell] \rightarrow M, i=1,2$ be two different geodesics parametrized by arclength from p to q. Let $X_{i}:=\dot{\gamma}_{i}(\ell)$. Show $X_{1}=-X_{2}$.
Hint: Assume X_{1} and X_{2} were linearly independent, choose a vector Y as in a). Then show that there are variations $\gamma_{i, s}, s \in(-\epsilon, \epsilon)$ of γ_{i}, with $\gamma_{1, s}(\ell)=\gamma_{2, s}(\ell)$, and $\left.(d / d s)\right|_{s=0} \gamma_{1, s}(\ell)=\left.(d / d s)\right|_{s=0} \gamma_{2, s}(\ell)=Y$. Show that for small $s>0$, we have $\hat{q}_{s}:=$ $\gamma_{1, s}(\ell) \in C_{p}$ and $d\left(p, \hat{q}_{s}\right)<d(p, q)$.

