

Exercise Sheet no. 11

1. Exercise: Cartan-Hadamard (4 points).

Let (M,g) be a connected and complete Riemannian manifold. We assume that the sectional curvature is non-positive, i.e. $K(M,g) \leq 0$. Let $p \in M$ and denote with $\exp_p: T_pM \to M$ the Riemannian exponential map at p.

- a) Use the Proposition 4.1 from the lecture to show that there are no conjugated points.
- b) Show that the Riemannian manifold $(N, h) := (T_p M, \exp_p^* g)$ is complete.
- c) Show that $\exp_p: (T_pM, \exp_p^* g) \to (M, g)$ is a Riemannian covering.

2. Exercise (4 points).

Let V be a real vector space. We consider $R(t), S(t), S_0 \in \text{End}(V)$ which comply to the Riccti equation

$$\dot{S}(t) = R(t) + S^2(t),$$
 (1)
 $S(0) = S_0$

- a) Assume that R(t) and S_0 is symmetric. Show that the solution S(t) is also symmetric.
- b) Assume moreover $\frac{\nabla}{dt}R(t) = 0$. Compute a solution of the system (1).
- c) Consider the case $V = \mathbb{R}^2$ and $R(t) = \begin{pmatrix} t+2 & t-2 \\ t-2 & -t+2 \end{pmatrix}$. Find the solution of the system (1) for $S_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

3. Exercise (4 points).

Let (M, g) be a connected Riemannian manifold without any pair of conjugate points (e.g. if $K \leq 0$). For $p \in M$ define

 $C_p := \{ \tilde{q} \in M \mid \text{ There exists more than one shortest curve between } p \text{ and } \tilde{q} \}.$

We also assume that $q \in Q_p$ satisfies $d(p,q) = \min\{d(p,\tilde{q}) \mid \tilde{q} \in C_p\}$.

- a) Let $X_1 \neq X_2 \in T_q M \setminus \{0\}$ and assume that X_1 and X_2 are linearly independent. Show that there exists a $Y \in T_p M$ with $\langle Y, X_1 \rangle < 0$ and $\langle Y, X_2 \rangle > 0$ and $\angle (Y, X_1) = \angle (X_2, Y)$.
- b) Let $\ell := d(p,q)$ and let $\gamma_i: [0,\ell] \to M$, i = 1,2 be two different geodesics parametrized by arclength from p to q. Let $X_i := \dot{\gamma}_i(\ell)$. Show $X_1 = -X_2$. Hint: Assume X_1 and X_2 were linearly independent, choose a vector Y as in a). Then show that there are variations $\gamma_{i,s}$, $s \in (-\epsilon, \epsilon)$ of γ_i , with $\gamma_{1,s}(\ell) = \gamma_{2,s}(\ell)$, and $(d/ds)|_{s=0}\gamma_{1,s}(\ell) = (d/ds)|_{s=0}\gamma_{2,s}(\ell) = Y$. Show that for small s > 0, we have $\hat{q}_s := \gamma_{1,s}(\ell) \in C_p$ and $d(p, \hat{q}_s) < d(p, q)$.