Differential Geometry II: Exercises University of Regensburg, Summer Term 2024 Prof. Dr. Bernd Ammann, Julian Seipel Please hand in the exercises until Tuesday, June 25, 12:00 in the letterbox no. 16.

Exercise Sheet no. 10

1. Exercise (4 points).

a) Let $F_{\leq}, F_{\geq}: I \to \mathbb{R}$ be two C^1 functions defined on a common interval I and $\kappa \in \mathbb{R}$. Assume that we have

$$F'_{\geq}(t) \ge \kappa + F_{\geq}(t)^2,$$

$$F'_{\leq}(t) \le \kappa + F_{\leq}(t)^2,$$

for all times $t \in I$. Let $t_0 \in \mathbb{R}$. Show:

$$\frac{d}{dt}\left[\left(F_{\geq}(t)-F_{\leq}(t)\right)\cdot\exp\left(-\int_{t_0}^t\left(F_{\geq}(s)+F_{\leq}(s)\right)ds\right)\right]\geq 0.$$

Assume moreover that if $F_{\geq}(t_0) \geq F_{\leq}(t_0)$ holds, then we have $F_{\geq}(t) \geq F_{\leq}(t)$ for all $t \geq t_0$.

b) Let (M^m, g) be a Riemannian manifold with $\operatorname{Ric}^g(X, X) \ge (m-1)g(X, X)$ for all $X \in TM$. Let $f: M \to \mathbb{R}$ be a generalized distance function and H the mean curvature of a hypersurface $N_p = f^{-1}(f(p))$ for a point $p \in M$. Show:

$$\partial_{\operatorname{grad} f} H \ge 1 + H^2.$$

- c) Let $\gamma: (a, b) \to M$ be an integral curve of grad f with $0 \in (a, b)$ and $H(\gamma(0)) = 0$. Show that $a \ge -\frac{\pi}{2}$ and $b \le \frac{\pi}{2}$. *Hint: Use a) with* $\kappa = 1$ and $F_{\le} = tan$.
- d) Assume $I = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What can we say about $\lim_{t \to \pm \frac{\pi}{2}} H(t)$?

2. Exercise (4 points).

Let $\gamma: [0, b) \to M$ be a geodesic in a Riemannian manifold. Show that

 $\{t \in [0, b) | t \text{ is not conjugate to } 0\}$

is open and dense in [0, b).

3. Exercise (4 points).

- a) Let (M, g) be a Riemannian manifold and $K_0 > 0$. Assume that we have a bound on the sectional curvature $|K(M, g)| \le K_0$. Let $J: [0, b] \to TM$ be a non-trivial Jacobi field along a geodesic $\gamma: [0, b] \to M$ with J(0) = J(b) = 0, i.e. $\gamma(0)$ and $\gamma(b)$ are conjugate points. Show that $b \ge \frac{\pi}{\sqrt{K_0}}$ holds. Hint: Derive the function h(t) = ||J(t)|| twice and write down a differential inequality of second order. Consider the substitution $F(t) = \frac{h'(t)}{h(t)}$ and find a differential inequality for F like in Exercise 1a).
- b) We equip $\mathbb{C}P^n$ with the Fubini-Study metric g_{FS} , i.e. the metric such that the Hopf fibration $\pi: S^{2n+1} \to \mathbb{C}P^n$ is a Riemannian submersion. Describe the geodesics in $(\mathbb{C}P^n, g_{FS})$. Hint: You may use the fact that horizontal lifts $\tilde{\gamma}$ of $\gamma: I \to \mathbb{C}P^n$ are geodesics, iff γ is a geodesic.
- c) Compute the cut locus of \mathcal{C}_p for a point $p \in \mathbb{C}P^n$ in $(\mathbb{C}P^n, g_{FS})$.

4. Exercise (4 points).

Consider a Riemannian manifold $(I \times N, ds^2 + g_s)$ for an interval $I \subset \mathbb{R}$ and a family of Riemannian metrics $(g_s)_{s \in I}$, which is smooth in s. Show:

- a) The second fundamental form is given by $II_{N_s} = -\frac{1}{2}\dot{g}_s$, where $N_s \coloneqq \{s\} \times N$ and the dot-Notation denotes the derivation w.r.t. the parameter s.
- b) Consider the hyperbolic space

$$\mathbb{H}^{n} \coloneqq \left\{ x \in \mathbb{R}^{n+1} \mid -x_{n+1}^{2} + \sum_{k=1}^{n} x_{k}^{2} = -1, x_{n+1} > 0 \right\}$$

and show that the distance function $f(x) = \text{dist}(x, e_{n+1})$ is given by $f(x_1, \ldots, x_{n+1}) = \operatorname{arcosh}(x_{n+1})$.

- c) A hypersurface $N_s = f^{-1}(s)$ for $s \in (0, \infty)$ is smoothly diffeomorphic to a sphere.
- d) The second fundamental form of $N_s \subset \mathbb{H}^n$ is given by $\mathbb{I}_{N_s} = -\coth(s) \cdot g_{\text{sphere}}$. In particular, the Weingarten map is given by $S = -\coth(s)\mathbb{1}$.
- e) Conclude that the Riccati inequality for mean curvature (Theorem 2.14 from the lecture) is an equality.