

Exercise Sheet no. 9

1. Exercise (4 points).

Let (M, g) be a connected, complete Riemannian manifold and $p \in M$. Recall that we defined \mathcal{R}_p as the set of all $q \in M \setminus \{p\}$ with the following properties:

- there is a unique shortest curve $\gamma_q: [0,1] \to M$ from p to q. We parametrize γ_q proportional to arclength, thus it is a geodesic with $\|\dot{\gamma}_q(0)\| = \operatorname{dist}(p,q)$.
- the endoints of γ_q are not conjugate along γ_q .

(Note that these conditions imply, in view of the 4. Exercise, that for any $0 \le a < b \le 1$, $\gamma_q(a)$ is not conjugate to $\gamma_q(b)$.) Furthermore we define

$$\mathcal{R}_p^{\mathrm{tan}} \coloneqq \{ \dot{\gamma}_q(0) \mid q \in \mathcal{R}_p \}.$$

We have said, that $\mathcal{R}_p^{\text{tan}}$ is open in T_pM and that \mathcal{R}_p is open in M. Finally, the *cut locus* \mathcal{C}_p at p is given by the complement $M \setminus \mathcal{R}_p$. Determine $\mathcal{R}_p^{\text{tan}}, \mathcal{R}_p$ and \mathcal{C}_p for the following cases:

a)
$$M = \mathbb{R}^2 / \Gamma$$
 for $\Gamma = \operatorname{span}_{\mathbb{Z}} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right)$ and the point $p = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} \right]$.

b) $M = \mathbb{R}P^n$ and the point $p = \mathbb{R}e_1$.

Remark: We consider in both cases the metric on the quotient induces from the standard metrics on \mathbb{R}^2 and S^2 .

2. Exercise (4 points).

Let (M, g) be a complete Riemanian manifold and let γ be a ray, i.e. $\gamma: [0, \infty) \to M$ is a geodesic parameterised by arc length with $d(\gamma(t), \gamma(0)) = t$ for all $t \in [0, \infty)$.

- a) Show that the function $f(q) \coloneqq \lim_{t \to \infty} (d(q, \gamma(t)) t)$ is well-defined. *Hint: Show the monotony in t and that there is a lower bound.*
- b) Assume that there exists an open subset $U \subset M$ such that $f_{|U}$ is C^1 . Show that the restriction $f_{|U}$ is a generalized distance function. *Hint: Imitate the proof in the lecture for the case* f(q) = d(q, A) for a subset $A \subset M$.

Remark: The function f in this exercise is called Busemann function.

3. Exercise (6 points).

Let (M, g) be a connected Riemannian manifold, $p \in M$. Recall that the *injectivity radius* is given by

injrad
$$(p) \coloneqq \sup\{r > 0 \mid B_r^{T_pM}(0) \subset \mathcal{D}_p \text{ and } \exp_{|B_r^{T_pM}(0)} \text{ is injective}\},\$$

where \mathcal{D}_p is the domain of the exponential function. We want to show that the restriction of the exponential map $\exp_{|B_{injrad(p)}^{T_pM}(0)}$ is an immersion (and thus a diffeomorphism onto its image).

a) Let $\gamma: [-a, b) \to M$, b > 0 be a geodesic parametrized by arclength with $\gamma(-a) = p$, such that p is conjugate to $\gamma(0)$ along γ . Moreover let $J: [-a, 0] \to TM$ be a non-vanishing Jacobi field along $\gamma|_{[-a,0]}$ with J(-a) = J(0) = 0. Consider

$$V_{\epsilon}(t) = \begin{cases} J(t) & \text{for } t \in [-a, -\epsilon] \\ \mathcal{P}_{\frac{1}{2}(t-\epsilon), t} \left(J\left(\frac{1}{2}(t-\epsilon)\right) \right) & \text{for } t \in [-\epsilon, \epsilon] \end{cases}$$

for $\mathcal{P}_{s,t}: T_{\gamma(s)}M \to T_{\gamma(t)}M$ the parallel transport w.r.t the curve γ . Show that $V_{\epsilon}(t)$ is a vector field along $\gamma|_{[-a,\epsilon]}$ and that it is the variational vector field of a piecewise C^1 -variation of $\gamma|_{[-a,\epsilon]}$ with fixed endpoints.

- b) Let $\delta > 0$. Show that by renormalizing J and choosing an appropriate ϵ we may achieve that $||J'(t)|| \ge 1$ and $||J(t)|| \le \delta$ holds for $t \in [-\epsilon, 0]$.
- c) Show:

$$\int_{-\epsilon}^{\epsilon} \|V'(t)\|^2 dt = \frac{1}{2} \int_{-\epsilon}^{0} \|J'(t)\|^2 dt$$

d) Show the estimate:

$$\left|\int_{-\epsilon}^{\epsilon} \langle R(V,\partial_t)\partial_t, V\rangle dt - \int_{-\epsilon}^{\epsilon} \langle R(J,\partial_t)\partial_t, J\rangle dt \right| \le 3 \cdot \epsilon \cdot \delta^2 \cdot \sup_M |K(M,g)|$$

- e) Use the second variation formula for the energy to show that $\gamma|_{[-a,\epsilon]}$ is not a shortest curve between its endpoints.
- f) Show that a < injrad(p) leads to a contradiction. Conclude that $\exp_{|B_{injrad(p)}^{T_pM}(0)}$ is an immersion.