

Exercise Sheet no. 8

1. Exercise (4 points).

Let V be a n + 1-dimensional real vector space.

- a) Let g and g' be non-degenerated symmetric bilinearforms of index 1 of V. Assume that for all $v \in V$ we have g(v, v) = 0 if and only if g'(v, v) = 0. Show that there exists a constant $\lambda \in \mathbb{R}$ with $g' = \lambda g$.
- b) Show that the constant from a) is positive if $n + 1 \ge 3$.
- c) Let $A: \mathbb{R}^{n,1} \to \mathbb{R}^{n,1}$ be an isomorphism of vector spaces for $n + 1 \ge 3$, which maps lightlike vectors to lightlike vectors. Show that there exists a constant $\lambda > 0$ such that $\lambda \cdot A \in O(n, 1)$ holds.
- d) Show that in the case n + 1 = 2 the conclusion of c) does not hold.

2. Exercise (4 points).

Let $\mathbb{R}^{n,1}$ be the Minkowski space. We call a linear map $A: \mathbb{R}^{n,1} \to \mathbb{R}^{n,1}$ self-adjoint if

$$\langle Av, w \rangle_{n,1} = \langle v, Aw \rangle_{n,1}$$

holds for all $v, w \in \mathbb{R}^{n,1}$. We call two linear maps $A, B: \mathbb{R}^{n,1} \to \mathbb{R}^{n,1}$ similar if there exists a $U \in \mathcal{O}(n,1)$ such that $A = UBU^{-1}$ holds. Show that every self-adjoint map $A: \mathbb{R}^{n,1} \to \mathbb{R}^{n,1}$ is similar to one of the following types: Either it is 1) a diagonal matrix D_{n+1} or

2)	D_{n-1}	0)	$\begin{pmatrix} D_{n-1} & 0 \end{pmatrix}$	$\int D_{n-1}$	0),
	0	$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$	$ \begin{array}{c} 3) \left(\begin{array}{cc} 0 & \lambda & 0 \\ & \epsilon & \lambda \end{array} \right) \qquad 4) $	$\left(\begin{array}{c}0\end{array}\right)$	$\begin{array}{ccc} \lambda & 0 & 1 \\ 0 & \lambda & 0 \\ 0 & 1 & \lambda \end{array}$	

where $a, b, \lambda \in \mathbb{R}$ with $b \neq 0$ and $\epsilon = \pm 1$.

3. Exercise (4 points).

Let $\mathcal{L} := \{x \in \mathbb{R}^{n+1,1} \mid \langle x, x \rangle_{n+1,1} = 0\}$ be the set of all lightlike vectors in Minkowski space. Show:

- a) The map $\iota: S^n \to \mathcal{L}, x \mapsto (x, 1)$ is a smooth embedding of smooth manifolds. The scalar multiplication of the ambient Minkowski space gives rise to a bijection $S^n \to \mathcal{L} \to \mathcal{L}/\mathbb{R}_{\neq 0}$. We call the inverse of this map $\pi: \mathcal{L} \to S^n$. This map is smooth.
- b) Let $x \in \mathcal{L}$ and $v \in T_x \mathcal{L}$ be spacelike. We consider the positively oriented 2-plane $E_v := \operatorname{span}\{x, v\}$. We take two oriented planes $E = E_v$ and $F = E_w$ for some spacelike vectors $v, w \in T_x \mathcal{L}$. The enclosed angle

$$\angle (E, F) \coloneqq \arccos \frac{\sqrt{\langle v, w \rangle}}{\sqrt{\langle v, v \rangle} \sqrt{\langle w, w \rangle}}$$

is independent on the choice of v, w and takes values in the interval $[0, \pi]$. This angle can also be computed by $\angle (E, F) = \angle (d_x \pi(v), d_x \pi(w))$, where the latter is angled taken in the standard sphere (S^n, g_{std}) .

c) Let $A \in O(n + 1, 1)$. The restriction of the map A to \mathcal{L} gives rise to a commutative square

of diffeomorphisms, where \overline{A} is defined $\pi \circ A \circ \pi^{-1}$. The map \overline{A} is a *conformal diffeomorphism*, i.e. there exists a function $f: S^n \to \mathbb{R}_{>0}$ such that $\overline{A}^*g_{\text{std}} = f^2g_{\text{std}}$ holds.

4. Exercise: (Conformal compactification of Minkowski space) (4 points).

Let $(M, g) = (\mathbb{R}^{n,1}, \langle \cdot, \cdot \rangle_{n,1})$ be the Minkowski space. We choose spherical coordinates $(t, r, x) \in \mathbb{R} \times (0, \infty) \times S^{n-1} \cong M \setminus (\mathbb{R} \times \{0\})$ on the complement of the wordline $\mathbb{R} \times \{0\}$ in Minkowski space. We also consider null coordinates u = t - r, v = t + r and $U = \arctan(u), V = \arctan(v)$ as well as T = U + V, R = V - U. Show:

- a) The map $M \setminus (\mathbb{R} \times \{0\}) \to \mathbb{R}^2 \times S^{n-2}, (t, rx) \mapsto (T, R, x)$ defines a diffeomorphism onto its image. Give an explicit form of the image $U \subset \mathbb{R}^2 \times S^{n-2}$.
- b) Determine the pulled-back metric \tilde{g} on U of the conformally transformed metric $\Omega^2 g \coloneqq \frac{4}{(1+u^2)(1+v^2)}g$ on M.
- c) The space $(M \setminus (\mathbb{R} \times \{0\}), \Omega^2 g) \cong (U, \tilde{g})$ isometrically embeds into $(\mathbb{R} \times S^n, -dt^2 + g_{S^n})$ via the map $\mathbb{R}^2 \times S^{n-1} \to \mathbb{R} \times S^n, (T, R, x) \mapsto (T, \sin(R)x, \cos(R))$ and that this extends to an isometric embedding of $(M, \Omega^2 g)$.
- d) The closure of the image of M in $\mathbb{R} \times S^n$ is compact.
- e) Determine the following subsets of the closure of the images:

$$\mathcal{I}^{0} = \left\{ \lim_{t \to \infty} \gamma(t) \mid \gamma : \mathbb{R} \to M \text{ is a spacelike geodesic} \right\}$$
$$\mathcal{I}^{\pm} = \left\{ \lim_{t \to \infty} \gamma(t) \mid \gamma : \mathbb{R} \to M \text{ is a future timelike geodesic} \right\}$$
$$\mathcal{J}^{\pm} = \left\{ \lim_{t \to \infty} \gamma(t) \mid \gamma : \mathbb{R} \to M \text{ is a future lightlike geodesic} \right\}$$