

Exercise Sheet no. 5

1. Exercise (4 points).

Let G be a compact Lie group and $H \subset G$ be a closed subgroup. Endow the Lie group with a bi-invariant metric. Show that the closed subgroup H is a totally geodesic submanifold of G, i.e. every geodesic of H is also a geodesic of G. Bonus: Construct a compact Lie group with a left-invariant metric and a subgroup which is not totally geodesic.

2. Exercise (4 points).

Let G be a Lie group which acts smoothly on a connected manifold M. Assume that the action is transitive, i.e. for all points $x, y \in M$ there exists a group element $g \in G$ with $x = g \cdot y$. Let $x \in M$ and denote with $G_x := \{g \in G \mid g \cdot x = x\}$ the stabilizer at the point x. Show that:

- a) The action restricted to the connected component of the identity G_0 is still transitive.
- b) Let $x \in M$. The connected component G_0 is a normal subgroup in G and we have isomorphisms $\pi_0(G) \cong G/G_0 \cong G_x/(G_x \cap G_0)$.
- c) There exists an example of a non-trivial group action of a connected Lie group G on a connected manifold such that G_x is not connected. If G_x is connected for a point $x \in M$, ne then G is already connected.

3. Exercise (4 points).

Let G be a connected Lie group which acts smoothly on a connected manifold M. We denote the group action by $\alpha: G \times M \to M$ and $\alpha_x := \alpha(\cdot, x): G \to M$ for a point $x \in M$. Show that:

- a) If the differential $d_1\alpha_x:\mathfrak{g}\to T_xM$ is surjective, then every orbit of the action is an open subset.
- b) The group action is transitive if and only if the differential $d_1 \alpha_x : \mathfrak{g} \to T_x M$ is surjective.

4. Exercise (4 points).

We endow \mathbb{CP}^n we the Fubini-Study metric g_{FS} . In particular the quotient map $\pi: S^{2n+1} \to \mathbb{CP}^n, x \mapsto [x]$ is a Riemannian submersion.

- a) Show that the canonical U(n+1) action on \mathbb{CP}^n is an isometric action.
- b) Compute the A-tensor of this Riemannian Submersion.
- c) Use the O'Neill formula to compute the Riemannian curvature tensor and show

$$K^{(\mathbb{CP}^{n},g_{\mathrm{FS}})}(\mathrm{span}\{d\pi(X),d\pi(Y)\}) = K^{S^{2n+1}}(\mathrm{span}\{X,Y\}) + \frac{3}{4} \|A(X,Y)\|^{2}$$

for all horizontal vectors X, Y of the Riemannian Submersion. What is the numerical range of the sectional curvature of the Fubini-Study metric?