Differential Geometry II: Exercises University of Regensburg, Summer Term 2024 Prof. Dr. Bernd Ammann, Julian Seipel Please hand in the exercises until Tuesday, April 23, 12:00 in the letterbox no. 16.



### Exercise Sheet no. 1

## **1.** Exercise (4 points).

Assume that (M, g), (N, h) are surfaces with Riemannian metrics with negative Gauß curvature. Is it true that the product manifold  $(M \times N, g + h)$  has everywhere negative sectional curvature?

#### **2.** Exercise (4 points).

Consider the following subsets of  $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ :

$$SO(n) = \{A \in \mathbb{R}^{n \times n} \mid A^T A = 1, \det_{\mathbb{R}}(A) = 1\}$$

$$GL(m, \mathbb{C}) = \{A \in \mathbb{R}^{2m \times 2m} \mid AJ = JA, \det_{\mathbb{R}}(A) \neq 0\}, \quad \text{if } m = n/2 \in \mathbb{N}$$

$$U(m) = \{A \in GL(2m, \mathbb{C}) \mid A^*A = 1\}$$

$$SU(m) = \{A \in GL(2m, \mathbb{C}) \mid A^*A = 1, \det_{\mathbb{C}}(A) = 1\}$$

$$Aff(n) = \left\{ \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \in GL(k+1, \mathbb{R}) \mid A \in GL(k, \mathbb{R}), b \in \mathbb{R}^k \right\}, \quad k = n-1$$

where we used in for  $m = n/2 \in \mathbb{N}$  the definition  $J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathbb{R}^{2m \times 2m}$ .

- a) For a matrix  $A \in \mathbb{R}^{2m \times 2m}$  with AJ = JA give a reasonable definition for the "complex determinant" det<sub>C</sub> A, and show that det<sub>C</sub>  $A \neq 0$  if and only if det<sub>R</sub>  $A \neq 0$ . (Bonus exercise: derive a formula for det<sub>R</sub> A in terms of det<sub>C</sub> A.)
- b) Show that these are Lie groups with the manifold structure induced from  $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ .
- c) Determine their Lie algebras (i.e. as linear subspaces of  $\mathbb{R}^{n \times n}$ ). What is the Lie bracket?
- d) Construct a Lie algebra isomorphism (i.e. an isomorphism of vector spaces preserving the Lie bracket) between the Lie algebra  $\mathfrak{so}(3)$  and the Lie algebra  $(\mathbb{R}^3, \times)$ , where  $\times$  denotes the cross product.

In the following we define the adjoint map of a Lie group G with Lie algebra  $\mathfrak{g}$  as

$$\operatorname{Ad}_{\operatorname{g}} \coloneqq \operatorname{d}_{\operatorname{1}} C_g : \mathfrak{g} \to \mathfrak{g}$$

# **3.** Exercise (4 points).

Let G be a Lie group and  $\mathfrak{g}$  its Lie algebra and let  $g \in G$ . We denote with  $\ell_g$  (respectively  $r_g$ ) the left multiplication by g (respectively right multiplication by g) of the Lie group. A Riemannian metric  $\langle \cdot, \cdot \rangle$  on G is called *left-invariant* (resp. *right-invariant*) if  $\ell_g$  (resp.  $r_g$ ) is an isometry of  $\langle \cdot, \cdot \rangle$  for all  $g \in G$ . A metric is called *bi-invariant metric* if it is right- and left-invariant. Show:

- a) A scalar product on the Lie algebra  $\mathfrak{g}$  can be extended uniquely to a left-invariant metric on G. The same holds if we replace "left-invariant" by "right-invariant".
- b) A left-invariant metric  $\langle \cdot, \cdot \rangle$  is bi-invariant iff its restriction  $\langle \cdot, \cdot \rangle_{\mathbb{1}} : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$  is Adinvariant metric, i.e. if it is invariant under pullback by  $\operatorname{Ad}_g$  for all  $g \in G$ .
- c) The bilinear map  $(A, B) \mapsto -\operatorname{tr}_{\mathbb{R}} AB$  defines an Ad-invariant metric on  $\mathfrak{so}(n)$ ,  $\mathfrak{u}(m)$ , and  $\mathfrak{su}(m)$ , which are the Lie algebras of the corresponding groups in Exercise 2.
- d) If the Lie group is compact, then there exists a bi-invariant metric on this Lie group. Hint: Take a left-invariant metric  $\langle \cdot, \cdot \rangle$  and show that

$$\langle X, Y \rangle'_h \coloneqq \int_G \langle d\ell_g X, d\ell_g Y \rangle_{gh} \operatorname{dvol}(g)$$

for  $X, Y \in T_1G$ ,  $h \in G$  and dvol a right-invariant volume form. This gives a biinvariant metric on G.

## 4. Exercise (4 points).

Let  $(V, [\cdot, \cdot]_V)$  be a Lie algebra over a field  $\mathbb{K}$ . A linear subspace  $W \subset V$  is called an *ideal* if for all  $X \in W, Y \in V$  we have  $[X, Y] \in W$ . Show:

- a) The quotient vector space V/W carries a unique Lie bracket  $[\cdot, \cdot]_{V/W}$  such that the quotient map  $\pi: V \to V/W$  is a Lie algebra homomorphism.
- b) The kernel of a Lie algebra homomorphism is an ideal. Moreover every ideal of a Lie algebra is the kernel of a Lie algebra homomorphism.
- c) Let  $\mathbb{K} = \mathbb{R}$  and G, H Lie groups with  $H \triangleleft G$  be a normal subgroup and submanifold. The Lie algebra of H is an ideal of the Lie algebra of G.