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Preface
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in the summer term 2024. We assume that the readers of these notes and the audi-
ence of the lecture are already familiar with basic notions and results in differential
and (semi-)Riemannian gemetry, as taught typically in a one-semester lecture, this
includes e. g., the theorems by Hopf–Rinow, Bonnet–Myers and Cartan–Hadamard.
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I Lie groups and quotients
Tue. 16.4.

The goal of this section is to treat Lie groups, which are defined as manifolds
with a compatible group structure. Important examples are O(n), SO(n), U(n),
GL(n,R), . . .

Lie groups provide many more examples of Riemannian (and more generally semi-
Riemannian) manifolds.

1 Lie groups and Lie algebras

Literature for this section: [8], [12], [2], [6], [5]

1.1 Lie groups and their homomorphisms

Definition 1.1. A Lie group consists of a C∞-manifold G together with a smooth
map µ∶G ×G→ G, (σ, τ) ↦ µ(σ, τ) = στ = σ ⋅ τ , called multiplication, such that

(i) (G,µ) is a group

(ii) G ×G µ̃Ð→ G, (σ, τ) ↦ σ−1τ =∶ µ̃(σ, τ) is smooth.

As a consequence of (ii) we see that the following maps are smooth

ℓσ ∶G→ G, τ ↦ στ (left multiplication or left translation

rσ ∶G→ G, τ ↦ τσ (right multiplication or right translation)

inv∶G→ G, τ ↦ τ−1 (inversion)

µ∶G ×G µÐ→ G, (σ, τ) ↦ στ (multiplication)

Note also that Diff. geom. I, Exercise Sheet 3, Exercise 4 tells us that one can
replace (ii) by
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I Lie groups and quotients

(ii’) µ∶G ×G µÐ→ G, (σ, τ) ↦ στ is smooth

We write 1 for the neutral element of G. Then T1G is called the Lie algebra of
G. It is a vector space that comes with some additional structure discussed below,
a “Lie bracket”.

Examples 1.2.

1.) A finite-dimensional real vector space is a Lie group, if µ is the addition.

2.) C∗, S1 ⊂ C∗, R∗ are Lie groups, if µ is the multiplication.

3.) GL(n,R) is a Lie group, where µ is matrix multiplication. We view GL(n,R)
as an open subset and thus as an n2-dimensional submanifold of Rn×n.

4.) SL(n,R) ∶= {A ∈ Rn×n ∣ detA = 1}.
In order to show that SL(n,R) is a submanifold of GL(n,R) we show that
the determinant det∶GL(n,R) → R∗ is a submersion, i.e. dA det∶TA GL(n,R) →
Tdet AR∗ ≅ R is surjective for all A ∈ GL(n,R). It follows from this, that det−1(t)
is a submanifold for any t ∈ R∗. For t = 1, this shows that SL(n,R) = det−1(1)
is a submanifold.

(a) Let B = (bij)ij ∈ GL(n,R), C(t) ∶= 1 + tB = (cij(t))ij = (δij + tbij)ij.

d
dt ∣t=0

det(1 + tB) = d
dt ∣t=0

detC(t)

= ∑
σ∈Sn

sgn(σ) d
dt ∣t=0

(c1σ(1)(t)⋯cnσ(n)(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 for σ≠id

(∗)= d
dt ∣t=0

((1 + tb1σ(1))⋯(1 + tbnσ(n)))

(+)= d
dt ∣t=0

(1 + t(b1σ(1) +⋯ + tbnσ(n)) + P≥2(t))

= b1σ(1) +⋯ + tbnσ(n)

= trB

Here we used at (∗) and above that for σ ≠ id there are i ≠ j with ciσ(i)(0) =
cjσ(j)(0) = 0, and after (+) we write P≥2(t) for a polyomial in t without constant
and without a linear term, i. e., one only with monomials of degree ≥ 2.
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1 Lie groups and Lie algebras

(b) For A ∈ GL(n,R) we calculate

d
dt ∣t=0

det(A + tB) = d
dt ∣t=0

det(A ⋅ (1 + tA−1B))

= (detA) ⋅ d
dt ∣t=0

det(1 + tA−1B)

= (detA) ⋅ tr(A−1B)

We conclude

dA det(B) = d
dt ∣t=0

det(A + tB)

= (detA) ⋅ tr(A−1B).

The linear map dA∶Rn×n → R is surjective as

dA(A) = (detA) tr1 = n ⋅ detA ≠ 0 .

Now, we now that SL(n,R) is a submanifold. Its multiplication is the restric-
tion of the multiplication in GL(n,R), thus mutiplication is smooth as a map
µ∣SL(n,R)×SL(n,R)

∶SL(n,R) × SL(n,R) → GL(n,R). The image of µ∣SL(n,R)×SL(n,R)
is a subset of the submanifold SL(n,R) ⊂ GL(n,R), and this implies the smooth-
ness of µ∣SL(n,R)×SL(n,R)

∶SL(n,R) × SL(n,R) → SL(n,R).

Further we have

T1 SL(m.R) = {A ∈ Rn×n ∣ trA = 0}.

5.) The groups SO(n), O(n), U(n) and SU(n) are Lie groups, see Exercise Sheet 1,
Exercise 2

6.) If G and H are Lie groups, then G×H with the product manifold structure and
the product group structure

(G ×H) × (G ×H) → G ×H
((σ, τ), (σ̃, τ̃)) ↦ (σσ̃, τ τ̃)

is again a Lie group.
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I Lie groups and quotients

7.) Let Γ be a discrte subgroup of Rn, e. g., Γ = Zn or another lattice1 or another
discrete subgroup. If we equip Rn/Γ with the usual addition of equivalence
classes, called µ, then (Rn/Γ, µ) is a Lie group.

Definition 1.3. A homomorphism of Lie groups or a Lie group homomor-
phism is a smooth map f ∶G → H, for G and H Lie grous, that is also a group
homomorphism. The map f is a Lie group isomorphism if it is additionally
a diffeomorphism, it is a Lie group endomorphism if additionally G = H, and
it is a Lie group automorphism if G = H and if f is a diffeomorphism. We
write Hom(G,H), Iso(G,H), End(G), Aut(G) for the sets/monoid/groups of such
homorphisms.

Examples 1.4.

1.) The inclusions SO(n) ↪ O(n), U(n) ↪ O(2n), etc. are Lie group homomor-
phisms

2.) detK GL(n,K) → K≠0 is a Lie group homomorphism for K = R and K = C.

3.) For any σ ∈ G, conjugation by σ

Cσ ∶GÐ→ G

τ z→ στσ−1

is a Lie group automorphism, and C ● ∶G → Aut(G), g ↦ Cg is a group homo-
morphism. We obviously have

Cσ = ℓσ ○ rσ−1 = rσ−1 ○ ℓσ . (1.1)

Remarks 1.5.

1.) If G is a Lie group, one might be tempted to define a Lie subgroup as a subgroup
H of G such that H is a submanifold as well. However, this is not what one
usually does. One says that H ⊂ G is a Lie subgroup, if there is a Lie
group homomorphism f ∶ H ′ → G, that is injective and an immersion, such
that H = image(f). For example consider G = R2/Z2 and f(t) = [t, αt] for
some α ∈ R ∖ Q. Then f ∶ R → G is an injective immersion and a Lie group

1A lattice in Rn is by definition a discrete subgroup Γ of Rn, isomorphic to Zn. It follows that
Rn/Γ is a compact manifold (without boundary), and that there is an A ∈ GL(n,R) with
Γ = A ⋅Zn.
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1 Lie groups and Lie algebras

homomorphism, but H ∶= image(f) is not a submanifold in the usual sense:
a submanifold is always a locally closed subset, but H is not a locally closed
subset of G. This leads in books on Lie group, as e. g., in [12, Definition 1.27
(b)] to a slightly generalized definition of a submanifold, however we do not
want to elaborate too much on this.

2.) The closed subgroup theorem, see [12, Theorem 3.42], states: Let G be a Lie
group, and let H be a subgroup of G (in the sense of group theory) that is closed
as a subset, then H is a submanifold of G. It follow any closed subgroup H

of G is a Lie group (with induced differentiable structure and induced group
structure). Although this result is rather simple to state, the proof is a bit
involved. Thus we will not prove it here.

1.2 Lie algebras and their homomorphisms

Let us recall the following exercise from last semester:

Exercise 1.6 (Diff. geom. I, Exercise Sheet 7, Exercise 2). Let F ∶ M → N be a
smooth map between smooth manifolds M and N . Let X,Y (resp. X̃, Ỹ ) be (smooth)
vector fields on M (resp. N). We say that X is F -related to X̃ if dF ○X = X̃ ○F
holds on M .
Show that, if X is F -related to X̃ and Y is F -related to Ỹ , then [X,Y ] is F -related
to [X̃, Ỹ ].

Definition 1.7. A vector field X ∈ X(G) is called left-invariant if for all σ ∈ G
we have dℓσ(X) =X ○ ℓσ, i. e., if the diagram

G G

TG TG

ℓσ

X X

dℓσ

commutes. Similarly X is called right-invariant if for all σ ∈ G we have drσ(X) =
X ○ rσ. If X is left- and right-invariant, we say X is bi-invariant.
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I Lie groups and quotients

Using the language of Exercise 1.6, we see that a vector field X ∈ X(G) is left-
invariant (right-invariant, resp.), if, and only if, it is ℓσ-related (rσ-related, resp.)
to itself for any σ ∈ G.

Remarks 1.8.

1.) For any X0 ∈ T1G there is a unique left-invariant vector field X ∈ X(G) with
X ∣

1
=X0. The uniqueness follows from the calculation

X|σ =X ○ ℓσ(1) = (dℓσ ○X)(1) = dℓσ(X|
1
) = dℓσ(X0) . (1.2)

On the other hand if we use (1.2) to define X, i. e., if we set X|σ ∶= dℓσ(X0),
then this vector field is the composition

G
(id,X0)ÐÐÐÐ→G × TGÐ→ TG

σ z→ (σ,X0) z→ dℓσ(X0)

which is obviously smooth in σ. In order to show that the vector field X thus
obtained is left-invariant we calculate for any fixed τ ∈ G

X ○ ℓτ(σ) =X ∣τσ

(def)= dℓτσ(X0)
(∗)= dℓτ(dℓσ(X0))

(def)= dℓτ(X ∣σ)

where we used the chain rule d(f ○ g) = (df) ○ (dg) at (∗), and thus we have
X ○ ℓτ = dℓτ ○X for all τ ∈ G.

2.) The analogous statement holds as well if we replace left-invariance by right-
invariance.

3.) With Exercise 1.6 we see: if X,Y ∈ X(G) are left-invariant (right-invariant,
resp.) vector fields, then [X,Y ] is also left-invariant (right-invariant, resp.)

Definition 1.9 (Lie bracket on the Lie algebra). Let G be a Lie group with Lie
algebra T1G. The vectors X0, Y0 ∈ T1G are extended to left-invariant vector fields X
and Y . We define

[X0, Y0] ∶= [X,Y ]∣
1

.

This defines a bilinear map [ ● , ● ]∶T1G×T1G→ T1G, called the Lie bracket on the
Lie algebra T1G of G.

Fr 19.4.

The pair (T1G, [ ● , ● ]) satisfies the defining properties of a Lie algebra over R,
which are defined as follows:
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1 Lie groups and Lie algebras

Definition 1.10 (Abstract Lie algebra). Let K be a field and g a K vector space.
A bilinear map [ ● , ● ]∶g × g→ g is called a Lie bracket on g if it satisfied

(i) Alternation: for all x ∈ g we have [x,x] = 0

(ii) Jacobi identity: for all x, y, z ∈ g we have

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 .

The pair (g, [ ● , ● ]) is then called a Lie algebra (over K).

If the characteristic of K is not 2 – and the field K = R we are interested in the
case that K is of characteristic 0 –, then condition (i) is equivalent to

(i’) Antisymmetry: for all x, y ∈ g we have [x, y] = −[y, x].

(In characteristic 2 (i’) still implies (i), but the converse is no longer true.)

A Lie subalgebra of g is a linear subspace of g that is closed under the Lie-
bracket, i. e., then it is itself a Lie algebra.

It is obvious that the Lie bracket on T1G defined in Definition 1.9 satisfies (i’)
(or equivalently (i)). The Jacobi identity follows immediately in this situation from
Exercise 1.6.

Usually for a Lie group the associated Lie algebra, viewed as a vector space with
Lie bracket, is denoted by the the associated small fraktur (= gothic) letters, e. g.,

Lie group G H GL(n,R) O(n) SO(n) GL(n,C) U(n)
Lie algebra g h gl(n,R) o(n) so(n) gl(n,C) u(n)

We also will often write Lie(G) for the Lie algebra of G, e. g., g = Lie(G), h =
Lie(H), etc.

Examples 1.11.

1.) If we consider G ∶= Rn as a Lie group with µ(x, y) = x+y, then the left-invariant
vector fields are the constant ones. As the Lie bracket of constant vector fields
vanishes, the Lie bracket on the Lie algebra is the zero map 0∶Rn × Rn → Rn.
Thus the Lie algebra is (Rn,0).

2.) Let V be a finite-dimensional real vector space. We denote the vector space
automorphisms of V by GL(V ). By choosing a basis of V , and identify V ≅ Rn,
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I Lie groups and quotients

GL(V ) ≅ GL(n,R) we get a Lie group structure on GL(V ), independent of the
choice of basis above. Let us write Endlin(V ) for the vector space endomor-
phisms of V . We have GL(V ) = det−1(R ∖ {0}) for det∶Endlin(V ) → R, thus
GL(V ) is open in Endlin(V ). We obtain gl(V ) ∶= Tid GL(V ) ≅ Endlin(V ).

The left-invariant extension of X0 ∈ Tid GL(V ) ≅ Endlin(V ) is X ∣A ∶= A ↦
A ○ X0 ∈ TA GL(V ) ≅ Endlin(V ), X ∈ X(GL(V )). We proceed similarly for
Y0 ∈ Tid GL(V ) and Y ∈ X(GL(V )). Then

∂XY ∣A = A ○ ∂X0 ∣A(B ↦ B ○ Y0) = A ○X0 ○ Y0

∂YX ∣A = A ○ ∂Y0 ∣A(B ↦ B ○X0) = A ○ Y0 ○X0

[X,Y ]∣A = ∂XY ∣A − ∂YX ∣A = A ○ (X0 ○ Y0 − Y0 ○X0)

[X0, Y0] = [X,Y ]∣id =X0 ○ Y0 − Y0 ○X0 .

Thus the Lie algebra structure on Tid GL(V ) ≅ Endlin(V ) is given by (X0, Y0) ↦0

○Y0 −Y0 ○X0, i. e., [ ● , ● ] is the usual commutator in Endlin(V ), usually denoted
by [ ● , ● ] as well.

Definition 1.12 (Lie algebra homomorphism). Let (g, [ ● , ● ]g) and (h, [ ● , ● ]h) be
Lie algebras. A homomorphism of Lie algebras or a Lie algebra homomor-
phism is a linear map f ∶g→ h such that for all x, y ∈ g:

f([x, y]g) = [f(x), f(y)]h .

Writing g for (g, [ ● , ● ]g) and h for (h, [ ● , ● ]h), we denote by Hom(g,h) the set of
all Lie algebra homomorphisms. And similarly to Definition 1.3 we define isomor-
phisms, endomorphisms, automorphisms and Iso(g,h), End(g) and Aut(g).

Proposition 1.13. Let G and H be Lie groups and let f ∶G → H be a Lie group
homomorphism. Then

d1f ∶g→ h

is a Lie algebra homomorphism.

Proof: Assume X0, Y0 ∈ g. We extend X0 (resp. Y0) to a left-invariant vector
field X ∈ X(G) (resp. Y ∈ X(G)), i. e., X ∣σ = d1ℓσ(X0) for all σ ∈ G. Also extend
X̂0 ∶= d1f(X0) ∈ h to a left-invariant vector field X̂ ∈ X(H), and define similarly Ŷ0

and Ŷ . Thus X̂ ∣σ = d1ℓσ(X̂0) for all σ ∈H.
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1 Lie groups and Lie algebras

For σ, τ ∈ G we have (f ○ ℓσ)(τ) = f(στ) = f(σ)f(τ) = ℓf(σ)(f(τ)), thus f ○ ℓσ =
ℓf(σ) ○ f . We calculate for σ ∈ G.

(dσf)(X ∣σ) = (dσf ○ d1ℓσ)(X0) = d1(f ○ ℓσ)(X0)

= d1(ℓf(σ) ○ f)(X0) = d1ℓf(σ) ○ d1f(X0)
= d1ℓf(σ)X̂0 = X̂ ∣f(σ) .

As a result df ○X = X̂ ○ f . And similarly we get df ○Y = Ŷ ○ f . Thus we have just
shown that

G H

TG TH

f

X,Y X̂, Ŷ

df

commutes. This means that X resp. Y is f -related to X̂ resp. Ŷ – in the language
of Exercise 1.6. It follows from this exercise that [X,Y ] is also f -related to [X̂, Ŷ ].
Thus

d1f([X0, Y0]) = (df ○ [X,Y ])∣
1

= ([X̂, Ŷ ] ○ f)∣
1

= [X̂, Ŷ ]∣
1

= [X̂0, Ŷ0] = [df1(X0),df1(Y0)],

which is the statement of the proposition.

Corollary of Proposition 1.13. Assume that V is a finite-dimensional real vector
space. Let G be a subgroup and submanifold of GL(V ). Let g be the Lie algebra of
G. Then the Lie-bracket on g is the commutator bracket on End(V ).

Proof: We have seen in Example 1.11 2.) that the Lie bracket on gl(V ) is the
commutator bracket of Endlin(V ). The Lie group homomorphism i∶G → GL(V )
induces an injective Lie algebra homomorphism di∶g→ gl(V ), thus g the Lie brackt
of gl(V ) restricts to the one on g.
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I Lie groups and quotients

1.3 Adjoint representations

Let G be a Lie group with Lie algebra g = T1G. For a given σ ∈ G we differentiate
Cσ ∶G → G at 1 and we obtain Adσ ∶= d1Cσ ∶g → g, which is obviously a linear map.
For σ, τ ∈ G differentiating Cστ = Cσ ○Cτ implies Adστ = Adσ ○Adτ .

Lemma 1.14. For σ ∈ G the map Adσ ∶g→ g is a Lie algebra automorphism.

Proof: Apply Proposition 1.13 to the Lie group homomorphism Cσ ∶G→ G.

Definition 1.15 (The adjoint representation of a Lie group). The group homomor-
phism obtained this way

Ad∶G→ Aut(g)

is called the adjoint representation of the Lie group G.

Remarks 1.16.

1.) One can show that Aut(g) is itself a Lie-group, in fact a Lie subgoup of the
group GL(g) of vector space automorphisms.

2.) The Lie algebra of Aut(g) is the Lie algebra Der(g) of derivations of g. A linear
map D∶g → g, where g is a Lie algebra, is called a derivation of g, if for all
x, y ∈ g we have

D([x, y]) = [D(x), y] + [x,D(y)] .

Thus we have aut(g) = Der(g).

We will not prove these statements here, as they will not be used in what follows
and they are easier to prove later.

Definition 1.17 (The adjoint representation of a Lie algebra). The differential at 1
of Ad∶G→ GL(g), namely

ad ∶= d1 Ad∶g→ gl(g), X ↦ adX = d1(σ ↦ Adσ)(X)

is called the adjoint representation of the Lie algebra g.

Accoding to Remarks 1.16 the adjoint representation of a Lie algebra is in fact a
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1 Lie groups and Lie algebras

Lie algebra homomorphism

ad∶g→ aut(g) = Der(g) .

Lemma 1.18. Let g be the Lie algebra of a Lie group. Then the adjoint map ad
satisfies. adX(Y ) = [X,Y ]

The proof will be given later. Tue. 23.4.

1.4 The exponential map

In the following t ∈ R, so ∂t ∶= d
dt is the positively oriented vector field on R of

constant length 1. For a smooth map f ∶R →M we also write ḟ(t) = df(∂r∣t). We
write Diff(M) for the group of diffeomorphisms of M .

Definition 1.19. Let M be a manifold and X ∈ X(M). A curve γ∶ I →M is called
integral curve of X or flow line of X, if for all t ∈ I we have

γ̇(t) =X ∣γ(t) .

The theorem of Picard-Lindelöf implies: For any p ∈ M there is an integral curve
γp of X with γp(0) = p and we assume that γp is defined on its maximal domain Ip,
and this maximal solution is unique. We say that X is complete if Ip = R for all
p ∈M . We also define ΦX

t (p) ∶= γp(t). Thus if X is complete, then we have a group
homomorphism ΦX● ∶R→ Diff(M), t↦ ΦX

t , called the flow of X.

We encourage the reader to check that t↦ ΦX
t is indeed a group homomorphism.

Lemma 1.20. For a left-invariant vector field X on a Lie group we have:

(1) X is complete,

(2) If γ is an integral curve of X, and σ ∈ G, then ℓσ ○ γ is an integral curve of X
as well,

(3) ΦX
t (στ) = σΦX

t (τ) for t ∈ R, σ, τ ∈ G.

(4) ΦλX
t = ΦX

λt for all λ, t ∈ R.

In the proof we use the conventions ∞+ t ∶= ∞ and −∞+ t = −∞ for all t ∈ R.
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I Lie groups and quotients

Proof: Let G be a Lie group and let X ∈ X(G) be a left-invariant vector field.
Consider the integral curve γ1∶ I1 → G, with γ1(0) = 1, I1 = (α,ω). For any σ ∈ G
we calculate that the curve ℓσ ○ γ1 is also an integral curve of X:

d
dt (ℓσ ○ γ1(t)) = dℓσ (γ̇1(t)) = dℓσ(X ∣γ1(t)) =X ∣ℓσ○γ1(t)

.

Thus γσ ∶= ℓσ ○ γ1∶ (α,ω) → G is the intergral curve with γσ(0) = σ. This already
shows (2).

Now for t0 ∈ (α,ω) we have

γ1(t0) = γγ(t0)(t0 − t0),

thus γ1 and γγ1(t0)( ● −t0) coincide, including their maximal domains. Hence (α,ω) =
(α + t0, ω + t0), hence α = −∞ and ω = ∞. This proves the completeness, i. e., (1).

The statement (3) follows from the facts that both t ↦ ΦX
t (στ) and t ↦ σΦX

t (τ)
are integral lines for X and that they coincide for t = 0.

In the notation above, and for any σ ∈ G we have ΦX
λt(σ) = γσ(λt). We calculate

with the chain rule

d
dtγσ(λt) = λγ̇σ(λt) = λ(X ∣

γσ(λt)
) = (λX)∣

γσ(λt)

Thus ↦ ΦX
λt(σ) is the integral curve of λX that attains σ for t = 0. Thus, by defi-

nition of ΦλX
t , we have (4).

Definition 1.21. A homomorphism f ∶R→ G is called a 1-parameter subgroup
of G.

Remark. Note that in general f(R) is in general not a submanifold (in the usual
sense2) of G, but it is a submanifold in the generalized sense of [12], see Re-
mark 1.5 1.). This explains the usage of the word “subgroup”.

Proposition 1.22. Let G be a Lie group. Then the 1-parameter subgroups are the
integral curves of some left-invariant vector field through 1. More precisely:

(1) Let f ∶R→ G be a 1-parameter subgroup, and take the left-invariant vector field
X ∈ X(G) such that ḟ(0) =X ∣

1
. Then f is the integral curve of X with f(0) = 1.

2i. e., in the sense of Analysis IV, Differential Geometry I, etc
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1 Lie groups and Lie algebras

(2) Let X be a left-invariant vector field and f ∶R→ G an integral curve of X with
f(0) = 1. Then f is a 1-parameter subgroup.

It follows, that two 1-parameter subgroups f1, f2∶R → G coincide if and only if
ḟ1(0) = ḟ2(0).

Proof:

“(1)”: Obviously f(0) = 1. As f is a homomorphism f(t + ● ) = ℓf(t) ○ f . Thus

ḟ(t) = d
dt ∣0

f(t + ● ) = d
dt ∣0

ℓf(t) ○ f = dℓf(t)(ḟ(0)) = dℓf(t)(X ∣
1

) =X ∣f(t) .

Thus f is an integral curve of X.

“(2)”: Obviously f is smooth. It is defined on R due to Lemma 1.20 (1). By defini-
tion of the flow we have f(t) = ΦX

t (1), and thus we calculate, using Lemma 1.20 (1)
at (∗)

f(t + s) = f(s + t) = ΦX
s+t(1) = ΦX

s (ΦX
t (1)) = ΦX

s (f(t))
(∗)= f(t)ΦX

s (1) = f(t)f(s) .

Thus f is a Lie group homomorphism.

Definition 1.23. Let G be a Lie group with Lie algebra g. We write X for the
left-invariant vector field extending X0 ∈ g. The exponential map exp is defined
as the map

exp∶g→ G, X0 ↦ ΦX
1 (1) .

WARNING 1.24. This exponential map is in general not the same as the Rieman-
nian exponential map, even if we know that the metric is left- or right-invariant.3.
As a consequence this map is also called the Lie group exponential map in or-
der to distinguish it from the (semi-)Riemannian exponential map. It does
however – as will be shown in the exercises – coincide with the Riemannian one for
bi-invariant metrics on Lie groups.

Theorem 1.25 (Properties of the exponential map). Let G be a Lie group with Lie
algebra fg, and X ∈ g, t, s ∈ R. Then we have

3The notions of left-, right-, and bi-invariant Riemannian metrics are defined in the exercises.
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(1) exp is smooth and with our usual identification T0g ≅ g, its differential d0 exp
is the identity of g. As a consequence there is an open neighborhood U of 0, such
that exp ∣U ∶U → exp(U) is a parametrization.

(2) exp(tX) = ΦX
t (1)

(3) t ↦ exp(tX) =∶ fX(t), R → G is a 1-parameter subgroup of G and any 1-
parameter subgroup is of that form for some X ∈ g. Furthermore ḟX(0) =X.

(4) The integral curves of the left-invariant vector field associated to X are, the
curves t↦ σ exp(tX) for σ ∈ G

(5) If X is the left-invariant vector that extends X ∈ g, then for all t ∈ R we have

ΦX
t = rexp(tX) .

Proof:

“(1)”: The smoothness of exp follows from the smooth dependence on the initial
conditions in the theorem of Picard–Lindelöf. We calculate for the left-invariant
vector fields X ∈ X(G) extending X ∈ g.

(d1 exp)(X) = d
dt ∣t=0

(exp(tX)) = d
dt ∣t=0

ΦX
t (1) =X ∣

1

=X .

Thus d1 exp = idg.

“(2)”: It follows from Lemma 1.20 (4) that exp(tX) = ΦtX
1 (1) = ΦX

t (1).

“(3)”: This immediately follows from Proposition 1.22.

“(4)”: The integral curves in this item are t↦ ΦX
t (σ) and we have seen in Lemma 1.20

(4) that ΦX
t (σ) = ℓσ(ΦX

t (1)) = ℓσ ○ exp(tX).

(5) immediately follows from (4) and the definition of ΦX
t .

Example 1.26 (Exponential map of matrix groups). We consider again the Lie
group GL(V ) for a finite-dimensional real vector space V . We have already seen in
Example 1.11 2.) that the left-invariant extension of X0 ∈ g is X ∈ X(GL(V )) with
X ∣A = A ⋅X0, A ∈ GL(V ).

For A ∈ gl(V ) we know from the theory of ordinary differential equations, that
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1 Lie groups and Lie algebras

the series
EXP(A) ∶=

∞

∑
i=0

1
i!A

i (1.3)

converges (uniformly on compact sets and also all derivatives converge uniformly
on compact sets). We obtain a map EXP∶gl(V ) → GL(V ) such that for t, s ∈ R,
A ∈ gl(V )

EXP((t + s)A) = EXP(tA)EXP(sA), EXP(0) = 1, EXP(−A) = EXP(A)−1 .

Thus t↦ EXP(tA) a 1-parameter subgroup, and

d
dt ∣t=0

EXP(tA) = A

It follows from Proposition 1.25 (3) that EXP(A) = exp(A). So we will write exp
instead of EXP from now on. The same holds if G is a submanifold and subgroup
of GL(V ).

Furthermore from the theory of ordinary differential equations we know that for
t ∈ R, A,B ∈ gl(V ), M ∈ GL(V ) we have

exp(MAM−1) =M exp(A)M−1 (1.4)

exp(A +B) = exp(A) exp(B) = exp(B) exp(A), if [A,B] = 0 (1.5)
d
dt (exp(tA)) = exp(tA)A = A exp(tA) (1.6)

We would like to have similar properties in adapted form for arbitrary Lie groups.
We already have an adapted form of the first equality of (1.6) which is the equation

d
dt (exp(tX)) = (dℓexp(tX))(X)

i. e., t↦ exp(tX) is an integral curve of the left-invariant extension of X.

Lemma 1.27. Let G be a Lie group, g = Lie(G), X ∈ g, t ∈ R. Then

Adexp(tX)(X) =X .

Proof: One easily checks Cexp(tX)(exp(tX)) = exp(tX). If we derive this at t = 0
one gets the equation stated in the lemma.
It immediately follows that (dℓexp(tX))(X) = (drexp(tX))(X), and we get the follow-
ing corollary that generalizes (1.6). Fr 26.4.
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Corollary 1.28.

d
dt (exp(tX)) = (dℓexp(tX))(X)) = (drexp(tX))(X)

Lemma 1.29. If f ∶G→H is a homomorphism of Lie groups. Let expG∶g→ G and
expH ∶h→H be the exponential maps of G and H. Then the diagram

G H

g h

f

expG expH

d1f

(1.7)

commutes, i. e., f ○ expG = expH ○d1f .

Proof: Let X ∈ g. Then t ↦ expG(tX) is a 1-parameter subgroup of G. Thus
t↦ f ○ expG(tX) is a 1-parameter subgroup of G. We calculate

d
dt ∣t=0

f ○ expG(tX) = d1f(
d
dt ∣t=0

expG(tX)) = d1f(X) .

Thus this is the 1-parameter subgroup t ↦ expH(td1f(X)), i. e., f ○ expG(tX) =
expH(td1f(X)) for all t ∈ R which implies the statement.

As a corollary we get the Lie group analogon of equation (1.4):

Corollary 1.30. For a Lie G and σ ∈ G we get Cσ ○ exp = exp ○Adσ, i. e., the
diagram

G G

g g

Cσ

exp exp

Adσ

commutes.

Proof: Apply Lemma 1.29 to H = G, f = Cσ and thus d1f = Adσ.
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1.5 Proof of Lemma 1.18

We now provide the proof of Lemma 1.18 which is still missing.

Let us recall the following exercise from last semester:

Exercise 1.31 (Diff. geom. I, Exercise Sheet 6, Exercise 4 with changed notation).
Let M be a smooth, not necessarily compact, manifold. Given a 1-parameter group
of diffeomorphisms φ ∶ M × R → M , (x, t) ↦ φt(x) on M , i. e., φ is smooth with
φ0 = IdM and φt ○ φs = φt+s for all s, t ∈ R. Let ξ be the associated tangent vector
field on M , defined as

ξ|x ∶=
d

dt ∣t=0
(φt(x)) ,

see also Diff. geom. I, Exercise Sheet 5, Exercise 3. Show that, for any smooth
tangent vector field Y on M and point p ∈M it is

d

dt ∣t=0
((φt)∗η) ∣p = −[ξ, η]∣p,

where, for any diffeomorphism ψ ∶M →M , the term ψ∗η denotes the pushforward
tangent vector field of η defined by ψ∗η ∶= dψ ○ η ○ ψ−1.

Proof of Lemma 1.18: 4 Let X,Y ∈ g with left-invariant extensions X and Y .
At first, we calculate for t ∈ R:

Adexp(tX)(Y ) = drexp(−tX) ○ dℓexp(tX)(Y )∣
1

= drexp(−tX)(Y )∣exp(tX)
(∗)= dΦX

−t(Y )∣ΦX
−t(1)

(+)= (ΦX
−t)∗(Y )∣1

where we used at (∗) Proposition (1) (5), and where we used at (+) the pushforward
of vector fields from the preceding exercise. We derive this with respect to t at t = 0,
and use the results of the exercise above at (†) for ξ = −X, η = Y and φt = ΦX

−t.
This gives

adX Y =
d
dt ∣t=0

Adexp(tX)(Y )

= d
dt ∣t=0

(ΦX
−t)∗(Y )∣1

4We roughly follow [12, 3.46].

Summer term 2024 Page 17

https://ammann.app.uni-regensburg.de/lehre/2023w_diffgeo1/Exercises06.pdf
https://ammann.app.uni-regensburg.de/lehre/2023w_diffgeo1/Exercises05.pdf
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(†)= [X,Y ]∣
1

= [X,Y ]

1.6 Commuting elements in Lie groups and Lie algebras

Definition 1.32. Two elements σ, τ ∈ G in a Lie group commute, if στ = τσ.
Two elements X,Y ∈ g in a Lie algebra commute, if [x, y].

We want to relate commutativity in a Lie group to commutativity in its Lie
algebra.

We start by some considerations on arbitrary manifolds M and N .

Lemma 1.33. Let f ∶M → N be a smooth map, and let X ∈ X(M) be f -related to
Y ∈ X(N), i. e., df ○X = Y ○ f . Then the flows ΦX

t and ΦY
t of X and Y satisfy

ΦY
t ○ f = f ○ΦX

t .

Proof: For p ∈M we will show that t ↦ γ(t) ∶= f ○ΦX
t (p) ∈ N is an integral curve

of Y . As one easily checks γ(0) = f(p), this proves the statement.

γ̇(t) = d
dt(f ○ΦX

t (p))

= df ○ ( d
dtΦ

X
t (p))

= df ○ (X ∣ΦX
t (p)
)

= (df ○X)∣ΦX
t (p)
)

= (Y ○ f)∣ΦX
t (p)
)

= Y ∣
γ(t)

.

Proposition 1.34. Let X and Y be vector fields on M with flows ΦX● and ΦY● .
Then

[X,Y ] = 0⇐⇒ ∀s, t ∈ R ∶ ΦX
t ○ΦY

s = ΦY
s ○ΦX

t .

Proof:
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“⇐”: We apply d
ds ∣s=0 to

ΦX
t ○ΦY

s = ΦY
s ○ΦX

t

and using d
ds ∣s=0Φ

Y
s = Y we obtain

d(ΦX
t ) ○ Y = Y ○ΦX

t

which means (ΦX
t )∗Y = Y . We apply Exercise 1.31 for ξ = X and thus φt = ΦX

t , so
we obtain by deriving with respect to t at t = 0:

0 = d

dt ∣t=0Y

= d

dt ∣t=0(Φ
X
t )∗Y

= −[X,Y ]

“⇒”: For p ∈M and for s ∈ R we define

vp(t) ∶= ((ΦX
t )∗Y )∣p

= d(ΦX
t ) ○ Y ○ΦX

−t(p) ∈ TpM .

We may differentiate this in the sense of Analysis II, and we write this differential
as v′p(t). Exercise 1.31 tells us that v′p(0) = −[X,Y ] = 0 for all p ∈ M . We set
p = ΦX

−s(q) and we get

vΦX
−s(q)
(t) = (d(ΦX

t ) ○ Y ○ΦX
−t−s)∣

q

= (d(ΦX
−s) ○ (d(ΦX

t+s) ○ Y ○ΦX
−t−s))∣

q

= (d(ΦX
−s) ○ (ΦX

t+s)∗Y )∣q
= d(ΦX

−s) (vq(t + s))

Deriving this with respect to t at t = 0 yields

0 = v′ΦX
−s(q)
(0) = d(ΦX

−s) (v′q(s))

and as d(ΦX
−s) is an isomorphism, this gives v′q(s) = 0 for all s ∈ R and all q ∈ M .

Thus we have vq(t) = vq(0) = Y for all q ∈M and t ∈ R. We have thus proven

d(ΦX
t ) ○ Y = Y ○ΦX

t
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which means that Y is ΦX
t -related to itself. Using Lemma 1.33 for M = N , X

replaced by Y , f = ΦX
t and t replaced by s we get

ΦX
t ○ΦY

s = ΦY
s ○ΦX

t .

Corollary 1.35. Let G be a Lie group, X,Y ∈ g = Lie(G).

(1) If [X,Y ] = 0 then exp(X) exp(Y ) = exp(Y ) exp(X) = exp(X + Y ).

(2) Conversely, if

exp(tX) exp(sY ) = exp(sY ) exp(tX) for all t, s ∈ R ,

then [X,Y ] = 0.

The first part of the Corollary provides a Lie group analogon of equation (1.5).

Proof: We extend X,Y ∈ g to left-invariant vector fields, also denoted by X and
Y .5

At first, let us assume [X,Y ] = 0. As we have exp(X) = ΦX
1 (1), the state-

ment exp(X) exp(Y ) = exp(Y ) exp(X) follows from “⇒” in Proposition 1.34. We
also have [sX, tY ] = st[X,Y ] = 0. Thus, we already know exp(sX) exp(tY ) =
exp(tY ) exp(sX) and this yields

exp((t + s)X) exp((t + s)Y ) = exp(tX) exp(sX) exp(tY ) exp(sY )

= ( exp(tX) exp(tY ))( exp(sX) exp(sY )),

thus t ↦ γ(t) ∶= exp(tX) exp(tY ) is 1-parameter subgroup of G, and γ′(0) =
drexp(0)X + dℓexp(0)Y = X + Y . Thus implies exp(t(X + Y )) = exp(tX) exp(tY )
which gives the remaining statement for t = 1.

The converse statement immediately follows from “⇐” in Proposition 1.34.

We have seen that exp∶g→ G satisfies d0 exp = id. Thus, the local reversal theorem
tells us that there is an open neighborhood U0 of 0 and and open neighborhood V0

5We assume it is clear from the context, when a vector is meant, and when we denote a vector
field.
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of 1 such that exp ∣U0
∶U0 → V0 is a diffeomorphism. Using continuity of multipli-

cation and inversion, we see that there is an open neighborhood U1 of 0 such that
U1 ⊂ U0, such that U1 is starshaped with respect to 0, satisfying X ∈ U1⇐⇒ −X ∈ U1

and X,Y ∈ U1⇒X +Y ∈ U0. We put V1 ∶= exp(U1) and by shrinking U1 and V1 fur-
ther we can achieve additionally µ(V1 ×V1) ⊂ V0 and we already have that inversion
maps V1 to itself.

Let γ∶ [0, b] → G be a continous path. For any t ∈ [0, b] we define Wt as the con-
nected component of {s ∈ [0, b] ∣ γ(t)−1γ(s) ∈ V1} that contains t. Then (Wt)t∈[0,b]

is an open cover6 of [0, b]. An elemantary compactness argument for [0, b], treated
under the name Lebesgue number ε, says: there is an ε > 0 if we have a partition

0 = t0 ≤ t1 ≤ ⋯ ≤ tk = b, ∀i ∈ {1,2, . . . , k} ∶ ti − ti−1 < ε (1.8)

then
∀i ∈ {1,2, . . . , k} ∶ ti ∈Wti−1

and thus

∀i ∈ {1,2, . . . , k} ∶ ∀s ∈ [ti−1, ti] ∶ γ(s)−1γ(ti−1) ∈ V1 and γ(ti−1)−1γ(s) ∈ V1 . (1.9)

Corollary 1.36. Let G be a connected Lie group with g = Lie(G). Then the fol-
lowing are quivalent:

(i) G is abelian, i. e., στ = τσ for all σ, τ ∈ G,

(ii) g is abelian, i. e., [X,Y ] = 0 for all X,Y ∈ g,

(iii) exp∶ (g,+) → (G,µ) is a group homomorphism.

Proof:

“(i)⇒(ii)”: This follows immediately from the second part of Corollary 1.35.

“(ii)⇒(iii)”: This follows immediately from the first part of Corollary 1.35.

“(iii)⇒(i)”: For σ ∈ G we choose a continuous path γ∶ [0, b] → G from 1 to σ.
We choose a subdivision as (1.8)/(1.9). Then σi ∶= γ(ti)−1γ(ti−1) ∈ V1 satisfies
σ = σ1σ2⋯σk. We write σi = exp(Xi), Xi ∈ U1. Similarly we decompose τ = τ1τ2⋯τℓ,
τj = exp(Yj), Yj ∈ U1. Condition (iii) implies that σiτj = τjσi for all i, j and thus

6in German: “Überdeckung”, nicht “Überlagerung”, the two terms have different meanings, but
are denoted with the same words “cover” and “covering” in English, but they are properly
distinguished in German
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στ = τσ.

1.7 The Baker–Campbell–Hausdorff Formula

We have seen that exp∶g → G satisfies d0 exp = id, and in the discussion following
Corollary 1.35 we have discussed the diffeomorphism exp ∣U0

∶U0 → V0, and also had
the smaller open neighborhoods U1 ⊂ U0 of 0 and V1 ⊂ V0 of 1. In particular
multiplication restricts to a map V1 × V1 → V0 and inversion maps V1 to itself.
We write log∶U0 → V0. In this language, it follows from Corollary 1.35 (1) for all
X,Y ∈ U1:

if [X,Y ] = 0, then log(exp(X) exp(Y )) =X + Y .

On the other hand it is clear from (the proof of) Corollary 1.35 (2) that this formula
no longer holds, if g is not abelian. The Baker–Campbell–Hausdorff formula, says
that this can be repaired by adding commutator terms.

Exercise 1.37. We define the 3-dimensional Heisenberg group H3 as

H3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 x z

0 1 y

0 0 1

⎞
⎟⎟⎟
⎠
∣ x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

This is a submanifold and subgroup of GL(3,R), thus a Lie group.

(a) Show that its Lie algebra h3, the 3-dimensional Heisenberg Lie algebra
is given by matrices as follows:

h3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 x z

0 0 y

0 0 0

⎞
⎟⎟⎟
⎠
∣ x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(b) Calculate exp∶h3 →H3, and show that it is a diffeomorphism.

(c) Show that log(exp(A) exp(B)) = A +B + 1
2[A,B].

(d) Show that [X, [Y,Z]] = 0 for all X,Y,Z ∈ h3, i.e. h3 is 2-step nilpotent.
Tu 30.4.
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The formula in (c) of this exercise is simple as higher order commutators vanish
in the sense of (d) . In general one has to work with a power series.

Theorem 1.38 (Baker–Campbell–Hausdorff formula). Let G be a Lie group with
Lie algebra g. There is a power series BCH whose term of degree k ∈ N0 is a
homogeneous polynomial of degree k

BCHk∶g × g→ g

such that

(1) BCH = ∑∞k=0 BCHk converges7 on a neighborhood U2 of 0. (We assume U2 ⊂ U1

for the U1 defined above.)

(2) log(exp(X) exp(Y )) = BCH(X,Y ) for all X,Y ∈ U2.

(3) The first terms are BCH0(X,Y ) = 0, BCH1(X,Y ) = X + Y , BCH2(X,Y ) =
1
2[X,Y ], BCH3(X,Y ) = 1

12[X, [X,Y ]] − 1
12[Y, [X,Y ]].

(4) BCHk can be expressed by a formula, which only uses the vector space operations
of g and [ ● , ● ].

(5) The formula for BCHk is the same formula for any Lie group/algebra: obviously
the bracket [ ● , ● ] is given by g, but using this bracket, the formula no longer depends
on g (or G). This property can also be expressed as follows: if φ∶g → h is a Lie
algebra homomorphism, then

BCHk(φ( ● ), φ( ● )) = φ (BCHk( ● , ● )) .

In other words, we have

log(exp(X) exp(Y )) =X + Y + 1
2[X,Y ] + 1

12[X, [X,Y ]] − 1
12[Y, [X,Y ]]

+ higher order terms (with at least 3 commutator

terms in each summand)

for X,Y sufficiently close to 0.

We do not prove this theorem here, see [5, Sections 3.1–3.5] for a proof.

7uniformly on any compactum in U2, and also all derivaties converge uniformly on such a com-
pactum)

Summer term 2024 Page 23



I Lie groups and quotients

1.8 From Lie algebra homomorphisms to Lie group
homomorphisms

Theorem 1.39 (Lifting Lie algebra homomorphism to Lie group homomorphisms).
Let G and H be Lie groups, g = Lie(G), h = Lie(H). Assume that G is simply-
connected8. Then for any Lie algebra homomorphism f ∶g→ h there is a unique Lie
group homomorphism F ∶G→H, such that d1F = f .

A full proof of this theorem is carried out in [12, Theorem 3.27], building on
the Frobenius theorem. Another approach, using the Baker–Campbell–Hausdorff
formula, is worked out in [5] where the above theorem is Theorem 3.7. We sketch
the latter approach.

Sketch of Proof:

(a) On g we choose an open neighborhood U2 of 0 as in Corollary 1.36. On h

we choose U h
2 ∋ 1, U h

2 ⊂○ h analogously. We set U3 ∶= U2 ∩ f−1(U h
2 ). We define

V3 ∶= exp(U3). We set F3∶V3 → H as F3 ∶= expH ○f ○ logG where expH is the
exponential map of the Lie group H, and logG the local inverse of the exponential
map of G. For σ, τ ∈ U3 we calculate using the Baker–Campbell–Hausdorff formula,
more precisely Theorem 1.38 (2) for X = log(σ) and Y = log(τ) at (∗), Theorem 1.38
(5) at (+) and Theorem 1.38 (2) for X = f ○ log(σ) and Y = f ○ log(τ) at (†):

F3(1) = expH ○f ○ logG(1)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=0

= expH(0) = 1

F3(στ) = expH ○f ○ logG(στ)
(∗)= expH ○f (BCH(logG(σ), logG(τ)))
(+)= expH(BCH(f ○ logG(σ), f ○ logG(τ)))
(†)= (expH ○f ○ logG(σ)) ⋅ (expH ○f ○ logG(τ))

= F3(σ)F3(τ) . (1.10)

(b) For a given σ ∈ G we choose a path γ∶ [0,1] → G with γ(0) = 1 and γ(1) = σ.
This is possible, as G is connected and thus path-connected. We restrict the open
neighborhood U3 further to some star-shaped open neighborhood U4 of 0 that is sym-
metric with respect to 0, i. e., X ∈ U4 ⇐⇒ −X ∈ U4, and such that µ(U4 ×U4) ⊂ U3.
We define V4 ∶= exp(U4). We choose a subdvision SUB: 0 = t0 ≤ t1 ≤ ⋯ ≤ tk = 1 as

8We use the convention that the definition of simply-connectedness includes connectedness
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in (1.8) and (1.9) with V4 instead of V1. We define

Fpath(γ,SUB) ∶= F3(γ(t0)−1γ(t1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F3(γ(t1))

F3(γ(t1)−1γ(t2))⋯F3(γ(tk−1)−1γ(tk))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F3(γ(tk−1)−1σ)

(1.11)

If SUB’ is a subdivision of SUB, then follows from (1.10) that

Fpath(γ,SUB’) = Fpath(γ,SUB) .

If SUB1 and SUB2 are two subdivisions, then we choose SUB’ to be a refinement
of both of them, and we argue

Fpath(γ,SUB1) = Fpath(γ,SUB’) = Fpath(γ,SUB2) .

Thus we now write Fpath(γ), as this does not depend on the subdivision SUB.

(c) Now, one shows: if γ′ is another path as above, and if H∶ [0,1] × [0,1] is a
homotopy from γ to γ′ with fixed endpoints, then Fpath(γ) = Fpath(γ′).

For this purpose one chooses a k ∈ N (such a number is given again by a “Lebesgue
number”, whose existence again relies on a compactness argument) , such

H([i − 1
k
] × [j − 1

k
]) ⊂ V4

for all i, j ∈ {1, . . . , k}. Now one passes from γ to γ′ in k2 steps by replacing in each
step a piece of the curve described by the square [i − 1

k
] × [j − 1

k
], see the drawing

in the lecture. This proves the claim in this item.

(d) As g is simply-connected, we see that there is a map F ∶G → H, such that
F (σ) = Fpath(γ) if γ(0) = 1 and γ(1) = σ. The smoothness of F follows from the
smoothness of F3.

(e) Now let σ, τ ∈ G, we choose paths γ, ρ∶ [0,1] → G with γ(0) = ρ(0) = 1, γ(1) = σ,
ρ(1) = τ . Then ℓσ ○ ρ is a path from σ to στ . Thus the concatenation γ ∗ (ℓσ ○ ρ),
defined as

γ ∗ (ℓσ ○ ρ)(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ(2t) for 0 ≤ t ≤ 1
2

σ ⋅ ρ(2t − 1) for 1
2 ≤ t ≤ 1
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is a path from 1 to στ , and one easily checks9 that (1.11) yields

Fpath(γ ∗ (ℓσ ○ ρ)) = Fpath(σ) ⋅ Fpath(τ) .

This gives the homomorphism property F (στ) = F (σ) ⋅ F (τ).

2 Actions of groups on spaces
Fr 3.5.

2.1 Definitions for groups actions and examples

In this section all topological spaces are assumed to be Hausdorff spaces.

Definitions 2.1.

1.) A topological group is a topological space with a map µ∶G×G→ G such that
(G,µ) is a group and such that (σ, τ) ↦ µ(σ, τ−1) is continuous1. We write
στ ∶= µ(σ, τ). We denote the unit element by 1.

2.) A (continuous) left action of a topological group G on a topological space X is
a continuous map a∶G ×X →X such that

(i) a(1, x) = x for all x ∈X,

(ii) a(στ, x) = a(σ, a(τ, x)) for all σ, τ ∈ G, ∀x ∈X.

One also says that X is a G-space. We often write σx for a(σ,x), condition (ii)
then reads as (στ)x = σ(τx), so we can omit the parentheses. As a symbol we
write G ↷ X. Note that a group action induces a group homorphism G →
Homeo(X), where Homeo(X) denotes the group of homeomorphisms from X

to X. However, not every group hommorphism G → Homeo(X) defines an
action, in general.

3.) In order to get the definition of a right action we replace condition (ii) by

(ii’) a(στ, x) = a(τ, a(σ,x)) for all σ, τ ∈ G, ∀x ∈X.

One then writes xσ and we have x(στ) = (xσ)τ .

9in fact one has to be careful with the order!
1This is equivalent to claiming that µ and σ ↦ σ−1 are continuous.
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2 Actions of groups on spaces

4.) The action of G on X is called discrete if G carries the discrete topology. Then
continuity in 1.) is trivially satisfied, and the only conditions on the continuity
in 2.) is that for all σ ∈ G, ℓσ ∶X →X is continuous. So a discrete group action
of G on X is the same as a group homomorphism G→ Homeo(X).

5.) An action is smooth, if G is a Lie group, if X is a smooth manifold, and if a
is a smooth map. We then say that X is a smooth G-space.

6.) An action is free, if

∀σ ∈ G ∖ {1} ∶ ∀x ∈X ∶ σx ≠ x .

An action is effective or faithful if

∀σ ∈ G ∖ {1} ∶ ∃x ∈X ∶ σx ≠ x .

An action is transitive if

∀x, y ∈X ∶ ∃σ ∈ G ∶ σx = y .

(For right actions the obvious modification should be done in each definition.)

7.) The orbit of x is Gx ∶= {σx ∣ σ ∈ G}. (We then have: G acts transitively ⇐⇒
Gx =X for all x ∈X X≠∅⇐⇒ Gx =X for some x ∈X.)

8.) The stabilizer or isotropy group at x ∈X is

Gx ∶= {σ ∈ G ∣ σx = x} .

This is a closed subgroup of G (obvious). For smooth actions it is a submanifold
(more involved, no proof here).

9.) The quotient space is
G/X ∶= {Gx ∣ x ∈X} .

We will clarify its topology and its smooth structure, if it exists.

Examples 2.2.

1.) Let X = G be a topological group (or even a Lie group)

(i) a(σ, τ) = µ(σ, τ) = στ
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(ii) a(σ, τ) = µ(τ, σ−1)

(iii) a(σ, τ) = µ(τ, σ)

(iv) a(σ, τ) = µ(σ−1, τ)

(i) and (ii) are left actions, while (iii) and (iv) are right actions.

2.) Let X = G. Conjugation: a(σ, τ) = στσ−1 =∶ Cσ(τ) is a left action.

3.) Adσ ∶g→ g defines a left action a(σ,X) ∶= Adσ(X) on g.

4.) O(n+ 1) acts on Sn ⊂ Rn+1 transitively and smoothly. Let en+1 ∶= (0,0,⋯,0,1)T
Then the stabilizer of O(n + 1) at en+1 is

O(n + 1)∣en+1
=
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A 0
0 1
⎞
⎠

RRRRRRRRRRR
A ∈ O(n)

⎫⎪⎪⎬⎪⎪⎭
≅ O(n)

5.) {±1} acts on Sn ⊂ Rn+1 by multiplication. This is a free, discrete smooth action.
The quotient RPn = {±1}/Sn is the real projective space.

6.) U(1) = S1 ∶= {z ∈ C ∣ ∣z∣ = 1} acts on S2n+1 ⊂ Cn+1 by multiplication. This is a
free, smooth action, called the Hopf action. The quotient CPn = S1 /S2n+1 is
the complex projective space.

2.2 Proper maps and proper actions

Definitions 2.3.

1.) A continuous map f ∶X1 →X2 is proper if F −1(K) is compact for all compacta
K ⊂X2.

2.) An action of G on X is defined to be proper if

G ×X ΘÐ→X ×X
(σ,x) ↦ (σx,x)

is a proper map. The map Θ is called the associated shear map.

Example 2.4. Assume that G acts on X continuously. If G is compact, then the
action is proper. In order to prove this, let K ⊂ X × X be compact. We write
pri∶X ×X → X for the projection to the i-th factor. Then K̂ ∶= pr2(K) ⊂ X is also

Page 28 Differential Geometry II
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compact. As a consequence Θ−1(K) is a closed subset of the compact set G × K̂,
and thus compact as well.

Note: if the action map a∶G ×X →X is a proper map, then the action is proper
(i. e., Θ is a proper map). The converse is not true. In fact let a∶G × X → X

be a compact map. For some x0 ∈ X consider the compact set A ∶= a−1({x0}) =
{(g, g−1x0) ∣ g ∈ G}. Then pr1 defines a continuous surjective map A→ G, thus G is
compact. Thus it is too restrictive to claim that a∶G ×X →X is a proper map.

As an example, consider the action of G = (R,+) on X = R given by a(σ,x)0σ+x.
One easily checks, that this action is proper (as an action), but as R is not compact,
the map a is not proper.

For K ⊂X we define σK ∶= {σk ∣ k ∈K} and

GK ∶= {σ ∈ G ∣ σK ∩K ≠ ∅} .

In particular, for x ∈X, G[x] = Gx is the isotropy group of x.

Proposition 2.5. The action of G on X is proper if, and only if, GK is compact
for all compact sets K ⊂X.

In the special case that G acts smoothly on the manifold X, this is the equivalence
of i) and ii) of Exercise Sheet 3, Exercise 2. We will thus currently omit the proof.

Recall the following from the beginners’ lectures:

Theorem 2.6 (Bolzano–Weierstrass). Let X be a metrizable topological space (i. e.,
a space whose topology is induced from a metric). Then

X is compact ⇐⇒X is sequentially compact

where a space X is called sequentially compact if X is a Hausdorff space in
which any sequence has a convergent subsequence.

All smooth manifolds are metrizable.

Proposition 2.7. Let G and X be metrizable, let X be locally compact, and let G
act continuously on X. Then the following are equivalent

(i) the action of G on X is proper.
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I Lie groups and quotients

(ii) Let (xi)i∈N be a sequence in M and (σi)i∈N a sequence in G such that the se-
quences (xi)i∈N and (σi ⋅ xi)i∈N converge. Then we find a convergent subsequence of
(σi)i∈N.

In the special case that G acts smoothly on the manifold X, this is the equivalence
of ii) and iii) of Exercise Sheet 3, Exercise 2. We will thus skip the proof.

Lemma 2.8. Let F ∶X → Y be a continuous, proper map between (topological)
manifolds. Then F is closed.

Note: The Lemma is still correct if one does not require X and Y to be topological
manifolds, but to require instead that X and Y are locally compact and metrizable
(Hausdorff) spaces. However, an adapted proof is required in this generality.

Proof: Let A ⊂X be closed, and take p ∈ F (A). We have to show that p ∈ F (A).

We choose a chart U yÐ→ V of Y , containing p, y(p) = 0. We choose an ε > 0 with
Bε(0) ⊂ V .

There is a sequence (qi)i∈N in A such that limi→∞F (qi) = p. After removing
finitely many exceptions from the sequence, we get F (qi) ∈ y−1(Bε(0)) =∶ K for
all i. Obviously, K is compact, and as F is proper F −1(K) is a compact subset
of X, hence K ′ ∶= F −1(K) ∩A is also compact, and we have qi ∈K ′.

Thus after passing to a subsequence, q∞ ∶= limi→∞ qi exists in K ′ ⊂ A. Then

F (q∞) = F (lim
i→∞

qi) = lim
i→∞

F (qi) = p .

Hence p ∈ imageF .

3 Topological quotients

Motivation: Let G be a Lie group acting on (smooth) manifold M . We try to find
good conditions, such that G/M is a (smooth) manifold.

We now consider the topology on such quotients, admitting a setting that is a bit
more general.
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3 Topological quotients

Definition and Lemma 3.1. Let X be a topological space. Let f ∶X → Y be
surjective. Then Y has exactly one topology such that

(i) f is continuous

(ii) for any topological space Z and any continuous map g∶X → Z we have: if there
is a map g∶Y → Z such that

X Y

Z

f

g g

commutes, then g is already continuous.

This topology is called the quotient topology on Y . A surjective map such that
Y carries the quotient topology is called a topological quotient.
Moreover the quotient topology is characterized by the following:

U ⊂ Y is open ⇐⇒ f−1(U) ⊂X is open.

Proof:

(a) Uniqueness of the topology:
Let O1 and O2 be two topologies on Y with properties (i) and (ii). Then we get
the following commutative diagram

X

(Y,O1) (Y,O2)

f f

id .

As the maps id∶ (Y,O1) → (Y,O2) and id∶ (Y,O2) → (Y,O1) are both continuous, we
have O1 = O2. The topology is thus unique (if it exists).

(b) Existence of such a topology:
We define: a subset U ⊂ Y is open iff f−1(U) is open. This is a topology:

(i) ∅ and Y are open in Y , as ∅ = f−1(∅) and X = f−1(Y ) are open in X.
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(ii) Assume that U1, . . . , Uk are open in Y . Then

f−1(
k

⋂
i=1
Ui) =

k

⋂
i=1
(f−1 (Ui))

is also open.

(iii) Assume that Ui i ∈ I are open in Y . Then

f−1(⋃
i∈I

Ui) = ⋃
i∈I

(f−1 (Ui))

is also open.

f is continuous: obvious!

Continuity of maps g:

Assume Z and g as in (ii). Let W be open in Z. Then g−1(W ) is open in X.
Note that g−1(W ) = f−1(g −1(W )). By the definition of the topology on Y at
the beginning of this step, this holds only if g −1(W ) is open in Y .

Examples 3.2.

1.) f1∶R2 → R,
⎛
⎝
x

y

⎞
⎠
↦ x, is a topological quotient. The map f1 is an open map,

i. e., it maps open subsets to open subsets.

2.) f2∶R→ R,

t↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t if t < 0

0 if 0 ≤ t ≤ 1

t − 1 if 1 < t

is a topological quotient. The map f2 is not an open map, as it maps to open
set (0,1) to the non-open subset {0}.

3.) The composition of two topological quotients is again a topological quotient.
This is part of the following stronger statement: Let f ∶X → Y be a topological
quotient, Z a topological space, g∶Y → Z a surjective map. Then h ∶= g ○ f is a
topological quotient if and only if g is a topological quotient.
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“only if”: Let h be a topological quotient, then for U ∈ Z:

U open in Z ⇐⇒ h−1(U)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

=f−1(g−1(U))

open in X ⇐⇒ g−1(U) open in Y,

thus g is a topological quotient.

“if”: Let g be a topological quotient, then for U ∈ Z:

U open in Z ⇐⇒ g−1(U) open in Y ⇐⇒ f−1(g−1(U))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=h−1(U)

open in X,

thus h is a topological quotient.

WARNING 3.3. If f1∶X1 → Y1 and f2∶X2 → Y2 are topological quotients, then in
general f1 × f2∶X1 ×X2 → Y1 × Y2 is not a topological quotient. This product map
f1 × f2 will be continuous, but in some cases the quotient topology on Y1 × Y2 has
more open subsets than the product of the quotient topologies on Y1 and Y2.

Proposition 3.4. Assume that a topological group G acts continuously on the topo-
logical space X. Then

π∶X → G/X

p↦ [p] = G ⋅ p

is an open map.

Proof: For any σ ∈ G we define ℓσ ∶= a(σ, ● )∶X → X, x ↦ σx which is continuous.
As ℓσ−1 is the inverse to ℓσ, we know that ℓσ is a homeomorphism. Let V ⊂ X be
open, thus ℓσ(V ) is also open. Thus ⋃σ∈G ℓσ(V ) = π−1(π(V )) is open in X, and
finally we get that π(V ) is open in G/X.

Tue 7.5.

Corollary 3.5. Let again G ↷ X (continuously). If X is second countable, then
G/X is also second countable.

Proof: Let B = {Ui ∣ i ∈ I} be a countable basis of the topology of X. Then π(Ui)
is open in G/X for any i ∈ I. Thus

B̃ = {π(Ui) ∣ i ∈ I}
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is a countable set of open subsets of G/X.

It remains to show that B̃ is a basis of the topology of G/X.

Let V ⊂ G/X be open. Then, by definition of the quotient topology, π−1(V ) is
open in X. Thus there is J ⊂ I such that

π−1(V ) = ⋃
j∈J

Uj .

Using the surjectivity of f , it follows that

V = π(π−1(V )) = ⋃
j∈J

π(Uj)
´¹¹¹¸¹¹¹¶
∈B̃

.

4 Quotient manifolds

4.1 The theorem about smooth structures on quotients

Recall: A smooth map f ∶M → N is called a

(i) submersion iff ∀x ∈M ∶ df |x∶TxM → Tf(x)N is surjective

(ii) immersion iff ∀x ∈M ∶ df |x∶TxM → Tf(x)N is injective

(iii) local diffeomorphism, iff ∀x ∈M ∶ are open neighborhoods U of x in M and V
of f(x) in N such that

f ∣U ∶U → V

is a diffeomorphisms. Using the local reversal theorem we obtain:
f is a local diffeomorphism iff ∀x ∈M ∶ df |x∶TxM → Tf(x)N is bijective.

Theorem 4.1. Let a Lie group G act smoothy, freely, and properly on a man-
ifold M . Equip G/M with the quotient topology. Then G/M carries a unique
smooth structure such that π∶M → G/M is a submersion. Furthermore dim G/M =
dimM − dimG.

Examples 4.2.

1.) {±1} acts on Sn ⊂ Rn+1, compare Example 2.2 5.). This action is discrete,
smooth, free, and proper. We equip RPn ≅ {±1}/Sn with the quotient topology
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and the smooth structure given in Diff. geom. I, Exercise Sheet 1, Exercise 3. It
is easy to check that the canonical projection map π∶Sn → RPn is then smmooth
and a submersion.

2.) We consider again the Hopf action of S1 on S2n+1 ⊂ Cn+1 by complex multi-
plication, compare Example 2.2 6.). This action is non-discrete, smooth, free,
and proper. We equip the complex projective space CPn = S1 /S2n+1 with the
smooth structure given in Exercise 4.3. Then the canonical projection, called
the Hopf fibration, π∶S2n+1 → CPn is a submersion.

3.) Let Zn act on Rn by addition (or equivalently expressed: by translation). This
action is discrete, smooth, free, and proper. In Diff. geom. I, Exercise Sheet 3,
Exercise 3 we introduced a manifold structure on Tn = Zn /Rn. The topology is
the quotient topology, and the smooth structure is the one of the above theorem.

4.) In general, if G is discrete, then dim G/M = dimM , thus the submersion is in
fact a local diffeomorphism. Furthermore, from Exercise Sheet 3, Exercise 3 a)
we see that G acts properly discontinuously (and freely). Thus we are in the
setting of Diff. geom. I, Exercise Sheet 13, Exercise 4, if we replace the right
action by a left action, i. e., by defining in the exercise R(p, σ) ∶= a(σ−1, p), for
σ ∈ G, p ∈M . Thus M → G/M is a surjective covering.

5.) Conversely, you may ask whether every covering π∶M → N that is surjective and
a local diffeomorphism arises this way. Here the answer is “No”, however, it is
yes, M is simply-connected. By choosing p ∈M , a covering map π∶M → N yields
a group homomorphism π∗∶π1(M,p) → π1(N,π(p)), and one can show that this
is injective. Assuming N and M are connected, the answer the above question
is “Yes” if and only if π∗(π1(M,p)) is a normal subgroup of π1(N,π(p)). Such
covers are called normal coverings or Galois coverings.

Let us formular the complex analogue of Diff. geom. I, Exercise Sheet 1, Exercise 3.

Exercise 4.3 (Potential exercise for Differential Geometry I). Let n ∈ N and CPn

be the set of 1-dimensional complex vector subspaces of Cn+1 ≅ R2n+2.

(a) Identify CPn with the quotient (Cn+1/{0}) /∼, where

x ∼ y ⇐⇒ ∃λ ∈ C× s.t. x = λy

and endow it with the quotient topology. Show that CPn is a compact Haus-
dorff space satisfying the second axiom of countability.
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(b) Show that the maps

Uj ∶= {[x] ∈ CPn ∣xj ≠ 0}
φj→ Cn ≅ R2n, [z] ↦ 1

zj

(z1, . . . , ẑj, . . . , zn+1), 1 ≤ j ≤ n+1,

are well-defined homeomorphisms (the “ẑj” means omitting “ zj ”, and z =
(z1, . . . , zn+1) ∈ Cn+1) .

(c) Show that A = (φj ∶Uj → R2n)j∈{1,2,...,n+1} is an atlas for CPn.

(d) For i, j ∈ {1, . . . , n + 1}, i ≠ j show that φj(Ui ∩ Uj) is an open subset of R2n

and that
φi ○ (φj)−1∶φj(Ui ∩Uj) → φi(Ui ∩Uj)

is a C∞-diffeomorphism.

Lemma 4.4. Assume that a Lie group acts G smoothly acts on a manifold M ,
p ∈ M . if sp∶G → M , σ ↦ σp is injective (on a neighborhood of 1), then sp is an
immersion.

In the following, we call this map sp the orbit map1 of p.

Examples 4.5.

1.) R → R, x ↦ x3 is an injective smooth map, but it is not an immersion. Thus
it cannot be obtained as a map sp as above for a suitable smooth action of
G = R on M = R. However, it is the map sp for G = M = R, p = 0 and for the
non-smooth, continuous action a(σ,x) = 3

√
[σ + x3].

2.) For α ∈ R ∖Q, T2 ∶= Z2 /R2 we define a∶R ×T2 → T2 as

a(t, [(x, y)] ∶= [(x + t, y + αt)]

where t, x, y ∈ R, thus [(x, y)] ∈ T2.

1I do not think that this terminology is used in the literature, but it seems a reasonable name
to me
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Figure in the lecture, not yet drawn electronically
A 2-dimensional torus with a line of irrational slope α

For any p ∈ T2, the map sp∶R → T2 is an injective immersion. However
Rp = sp(R) is not a submanifold.

Proof of Lemma 4.4: We assume that there is an open neighborhood U of 1 such
that sp∣U is injective. We write ℓσ, σ ∈ G, both for left multiplication ℓσ ∶G→ G and
for left multiplication ℓσ ∶M →M .
“d1sp∶g → TpM is injective”: Assume dsp∣

1
(X) = 0 for X ∈ g and define γ(t) ∶=

exp(tX), i. e., γ is a 1-parameter subgroup and satisfies γ̇(0) = X and γ(t0 + t) =
γ(t0)γ(t). We calculate

d
dt ∣t=t0

(γ(t) ⋅ p) = d
dt ∣t=0

(γ(t0 + t) ⋅ p) = dℓγ(t0)(
d
dt ∣t=0

(γ(t) ⋅ p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sp(γ(t))

)

= dℓγ(t0) ○ dsp(γ̇(0)) = 0 .

As a consequence γ(t) ⋅ p = p. for any t ∈ R. For t close to 0 we get a contradiction
to the injectivity of sp∣U.
“dσsp∶g→ TσpM is injective for all σ ∈ G”: We calculate

sp(ℓσ(τ)) = ℓσ(τ) ⋅ p = (στ)p = σ(τp) = σ ⋅ sp(τ) = ℓσ(sp(τ)) .

Hence the diagram

G G

M M

ℓσ

sp sp

ℓσ

and its derivative at τ = 1

T1G TσG

TpM TσpM

d1ℓσ

d1sp dσsp

dpℓσ
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commute. As d1ℓσ and dpℓσ are isomorphisms and as d1sp is injective, dσsp =
dpℓσ ○ d1sp ○ ( d1ℓσ)−1 is injective as well.

Proof of Theorem 4.1:

(a) If M is second countable, then G/M with the quotient topology is also second
countable topological space, see Corollary 3.5. In the literature there two non-
equivalent definition of “a manifold” see the section “Conventions and Notations”.
If you belong to the group of mathematicians for which a manifold is required
to be second countable, then you now have seen the proof that G/M is second
countable; and you may proceed with proof item (b). If you belong to the group
of mathematicians for which a manifold is only required to be paracompact2, then
you can argue “in each component” in a a similar way.3Fr 10.5.

(b) “G/M is a Hausdorff space.”:
The action is proper, thus by Definition 2.3 the associated shear map

G ×M ΘÐ→M ×M
(σ,x) ↦ (σx,x)

is a proper map. Thus by Lemma 2.8

image(Θ) = Θ(G ×M) = {(σ ⋅ x,x) ∣ σ ∈ G, x ∈M}

is closed. Obviously for the equivalence relation ∼ defined by being in the same
G-orbit, we have

∀x, y ∈X ∶ (x, y) ∈ image(Θ) ⇐⇒ x ∼ y ⇐⇒ [x] = [y] .

Suppose [x] ≠ [y]. Then (x, y) ∉ image(Θ). As image(Θ) is closed, (x, y) is an inner
point of (M ×M) ∖ image(Θ). This means that x has an open neighborhood Ux in

2A locally Eudlidean Hausdorff space with a C1-atlas is paracomact, if and only if every connected
component is second countable. To understand our lecture, you may use this as a definition of
“paracompactness”.

3More precisely: Consider a connected component M0 and consider GM0 ∶= {σp ∣ σ ∈ G, p ∈
M0}. One checks that G/GM0 is a connected component of G/M, and any connected com-
ponent can be obtained this way.

As M is paracompact, M0 is second countable. The restriction of the canonical map π∶M →

G/M yields an open and surjective map M0
π
Ð→ G/GM0, see Proposition 3.4, and as in

the proof of Corollary 3.5 you see that the second countability for M0 implies the second
countability of G/GM0. Thus we have seen that any connected component G/M is second
countable.
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M and y has an open neighborhood Uy in M , such that

(Ux ×Uy) ∩ image(Θ) = ∅ .

the sets π(Ux) and π(Uy) are open due to Proposition 3.4, thus they are (open)
neighborhoods of [x] and [y]. For proving the Hausdorff property, it thus only
remains to check that π(Ux) ∩ π(Uy) = ∅.

Suppose that [z] ∈ π(Ux) ∩ π(Uy), and one may choose the representative z of
this class such that z ∈ Ux. From [z] ∈ π(Uy) we get the existence of a w ∈ Uy with
[z] = [w]. Thus there is a σ ∈ G with z = σw. We obtain the contradiction

(z,w) = (σw,w) = Θ(σ,w) ∈ image(Θ) ∩ (Ux ×Uy) = ∅ .

(c) “Uniqueness of a smooth structure on G/M”
Suppose we have two smooth atlantesA1 andA2 on G/M such thatM πÐ→ (G/M,Ai)
is a submersion for i = 1,2. We now apply the following lemma:

Lemma A.1.2. Let f ∶ X → Y be a surjective submersion from the C∞-manifold
X to the C∞-manifold Y , and let Z be a further C∞-manifold. Let h ∶ Y → Z be a
map. Then h is smooth if and only if h ○ f is smooth.

We apply the lemma to the diagram

M

(G/M,A1) (G/M,A2)

π π

id

twice:

• Once for X ∶= M , Y ∶= (G/M,A1), Z ∶= (G/M,A2), f = π and h = id.
Then the smoothness of h○f = π∶M → (G/M,A2) gives us the smoothness of
h = id∶ (G/M,A1) → (G/M,A2).

• Once for X ∶= M , Y ∶= (G/M,A2), Z ∶= (G/M,A1), f = π and h = id.
Then the smoothness of h○f = π∶M → (G/M,A1) gives us the smoothness of
h = id∶ (G/M,A2) → (G/M,A1).

Thus id∶ (G/M,A1) → (G/M,A2) is a diffeomorphism, which says that the two
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smooth structures are the same.

(d) The Construction of a suitable smooth structure on G/M is a bit more involved
and will be proven in the next subsection, Subsection 4.2.

4.2 The construction of a suitable smooth structure on the
quotient

In this subsection, G will always ba a Lie group, acting smoothly and freely on a
smooth manifold M .

Definition 4.6. In the following a submanifold S of M will be called transversal
(to the orbits of G) if we have for all p ∈ S:

TpS ⊕ image(d1sp) = TpM . (4.1)

Recall d1sp∶g→ TpM is the differential of the orbit map sp∶G→M , σ ↦ σp.

As sp is injective, Lemma 4.4 tells us that dim image(d1sp) = dimG. Thus for a
transversal submanifold we have

dimG = dimM − dimS .

Example 4.7. We continue with Example 4.2 2.). Any non-trivial R-linear function
L∶R2n+2 ≅ Cn+1 → R defines a hypersurface NL ∶= {x ∈ S2n+1 ∣ L(x) = 0} which is a
totally geodesic sphere in S2n+1 of dimension 2n.

For which p ∈ NL do we have

TpNL ⊕ image(d1sp) = TpM ?

Note that i ∈ T1S1, and we have the above direct sum decomposition iff d1sp(i) ∉
TpNL. Because d1sp(i) = ip and TpNL = kerL ∩ p⊥ we see that the above decompo-
sition is direct precisely on

SL ∶= {x ∈ S2n+1 ∣ L(x) = 0 and L(ix) ≠ 0} .
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We see that SL is an open subset of NL and

NL ∖ SL = S2n+1 ∩ ker(Cn+1 → C, x↦ L(x) − iL(ix))

which is a totally geodesic hypersurface in NL diffeomorphic to S2n−1. Every orbit
that passes through p ∈ SL is of the form (cos t) ⋅ p+ (sin t)ip which intersects SL in
p and −p, i. e., once in the component

SL,+ ∶= {x ∈ S2n+1 ∣ L(x) = 0 and L(ix) > 0} ,

and once in the component

SL,− ∶= {x ∈ S2n+1 ∣ L(x) = 0 and L(ix)y0} .

Thus SL, SL,+ and SL,+ for any non-trivial L∶Cn+1 → R and all of their open subsets
are transversal to the orbits.

Remarks 4.8.

1.) If you try to imagine how a possible manifold S will look like, think of a small
manifold. Even when G and M are compact, one can rarely choose compact
transveral submanifolds S.

2.) We state that G ⋅ p = {σp ∣ σ ∈ G} = sp(G) is a submanifold of M , and that
Tσp(G ⋅ p) = image(dσsp). We will not prove this statement here, and we will
not use it in the following. A proof will follow immediately from Theorem 4.1
using the implicit function theorem which then also shows Tσp(G ⋅p) = ker dσpπ.

Lemma 4.9. Let G ↷ M freely and smoothly. Then for any p ∈ M , there is a
transversal submanifold S through p.

Proof: Choose a vector space W ⊂ TpM with

W ⊕ image(d1sp) = TpM .

It is easy to construct4 a smooth submanifold S0 inM with p ∈ S0 and and TpS0 =W .
Then

S ∶={x ∈ S0 ∣ TxS0 ∩ image(d1sp) ≠ {0}}

4The submanifold S0 can either be constructed in a chart or by taking the Riemannian exponen-
tial map expg for some5 Riemannian metric g and the defining S0 ∶= {exp X ∣X ∈W, g(X, X) <
ε2} for some small ε > 0.
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is an open subset S0 containing p. We see that S is a transversal submanifold with
p ∈ S.

Lemma 4.10. If S is a transversal submanifold, then

G × S ϑÐ→M
(σ, p) z→σp

is a local diffeomorphism.

Proof: Because of the local reversal theorem, the statement is equivalent to showing
that

d(σ,p)ϑ∶TσG⊕ TpS Ð→ TσpM (4.2)

is an isomorphism for all σ ∈ G and all p ∈ S.

For σ = 1, X ∈ T1G, Y ∈ TpS we calculate

d(1,p)ϑ(X,Y ) = d1sp(X) + Y .

With (4.1) this implies that image (d(σ,p)ϑ) = TpM , i. e., we have (4.2) for σ = 1.

Now consider arbitrary σ ∈ G. From σ(τp) = (στ)p we see that the diagram

G × S M

G × S M

ϑ

ℓσ × idS

ϑ

ℓσ

and its derivative at τ = 1
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T1G × TpS TpM

TσG × TpS TσpM

d(1,p)ϑ

d1ℓσ × idTpS

d(σ,p)ϑ

dpℓσ

commute. Now as three arrows in the last diagram are already known to be iso-
morphisms, the remaining on, i. e., d(σ,p)ϑ, is also an isomorphism. This gives (4.2)
in general.

End Fr 10.5.

Read following on Fr
17.5.

Definition 4.11. A transversal submanifold is small if

(i) G×S ϑÐ→M is injective and a homeomorphism onto its image (thus an embed-
ding of codimension 0).

(ii) there is a diffeomorphism S
yÐ→ V ⊂○ Rdim M−dim G

Lemma 4.12. Assume that the action G ↷ M is smooth, free and proper. For
each p ∈M , there is a small transversal manifold S through p.

Proof: Let S0 be a transversal submanifold through p ∈M . We choose a Rieman-
nian metric g on S, which allows us to define the open balls B(S,g)

ε (p) of radius ε
around p in (S, g). We define Si ∶= B(S,g)

1/i (p). For a sufficiently large i ∈ N, we will
prove that S ∶= Si satisfies Conditions (i) and (ii) in Definition 4.11. Thus we will
have proven that S is ia small transversal submanifold through p.
“(i)”: Suppose that for all i ∈ N:

G × Si
ϑÐ→M

is not injective. Thus there are (σi, pi), (σ̃i, p̃i) ∈ G ×M , (σi, pi) ≠ (σ̃i, p̃i) such that
σipi = σ̃ip̃i. This gives (σ̃i)−1

σipi = p̃i. Obviously we have

lim
i→∞

pi = p and lim
i→∞

p̃i = p .

As G acts properly, Proposition 2.7 tells us that a subsequence6, of τi ∶= (σ̃i)−1
σi

6We will pass to the subsequence without adapting the notation, for better readability.
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converges to some τ∞ ∈ G. In the limit we τipi = p̃i gives τ∞p = p. As G acts freely,
this implies τ∞ = 1.

As ϑ is a local diffeomorphism, there is an open neighborhood U of (1, p) in G×S0

such that ϑ∣U is a diffeomorphism onto its image. There is some i0 ∈ N such that
any i ≥ i0 satisfies (τi, pi) ∈ U and (1, p̃i) ∈ U . Then

ϑ(τi, pi)= τipi = p̃i = ϑ(1, p̃i) ,

and hence τi = 1 and pi = p̃i, which gives the contradiction (σi, pi) = (σ̃i, p̃i).

For any i ≥ i0 we thus know that ϑi ∶= ϑ∣G×Si
∶G × Si →M is injective.

Now for i ≥ i0 + 1 we will show that ϑi is homeomorphism onto its image, i. e., it
is also an open map. Note that Si ⊂ Si ⊂ Si−1. Let K be a compact neighborhood
of 1 in G. As ϑi−1 is continuous and injective, this also hold from

ϑi−1∣K×Si

∶K × Si → ϑ(K × Si) ⊂M .

As any continous bijective map from a compact space to a Hausdorff space is a
homeomorphism, the above map is a homeomorphism. Thus by restricting further
ontinuous and injective, this also hold for

ϑi∣ ○K×Si

∶
○

K × Si → ϑ(
○

K × Si) ⊂M .

We precompose this with the homeomorphism ℓσ−1 × id∶ (σ
○

K) × Si →
○

K × Si, and
thus

ϑi∣
(σ
○

K)×Si

= ϑi∣ ○K×Si

○ (ℓσ−1 × id)

defines a homeomorphism (σ
○

K) × Si → ϑ((σ
○

K) × Si). Thus the domain of ϑi is
covered7 by a collection of open sets Uσ ∶= σ

○

K, σ ∈ G, such that ϑi∣Uσ
∶Uσ → M

is open. This implies that ϑi itself is open and thus a homeomorphism for any
i ≥ i0 + 1.
“(ii)”: Take a chart y∶ Û → V̂ of S0 containing p. Then Si ⊂ Û for sufficiently large
i ≥ i0 + 1.

We are thus may assume that we are in the following setting:

Setting 4.13. Let G↷M be a smooth, proper, free action. Let p ∈M , n = dimM ,
7in German: überdeckt
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and k = dimG. The submanifold S of M is a small G-transversal submanifold
through p ∈ M . Then ϑ(G × S) is open in M , and ϑ∶G × S → ϑ(G × S) is a
local diffeomorphism and a (global) homeomorphism, thus it is a diffeomorphism.
Furthermore ϑ is G-equivariant, i. e., for τ, σ ∈ G and q ∈ S we have τ ⋅ ϑ(σ, q) =
ϑ(τσ, q). In particular, all orbits G⋅q are submanifolds with Tσq(G⋅q) = image(dσsq).
The Lie group G acts smoothly on ϑ(G × S), thus ϑ(G × S) is a smooth G-space.

Furthermore we have a chart y∶S → V ⊂○ Rn−k.

Lemma 4.14. We assume the setting above. Then the map ΦS ∶= π ○ϑ○(1, id)○y−1

obtained by the chain of maps

Rn−k ⊃○ V y−1

ÐÐÐ→S (1,id)ÐÐÐ→G × S ϑÐÐÐ→ϑ(G × S) πÐÐÐ→G/ϑ(G × S) ⊂○ G/M

p (1, p)

is a homeomorphism.

Corollary 4.15. G/M is a topological manifold.

Proof of Lemma 4.14: In the following diagram

S G × S ϑ(G × S)

S G/G × S G/ϑ(G × S)

(1, id) ϑ

idS π′ πprS

≅
α

≅
β

all maps except α and β are already defined and continuous, and obviously prS ○(1, id) =
idS. The spaces G/G × S and G/ϑ(G × S) carry the quotient topology, thus the
maps π and π′ are topological quotients. By applying Condition (ii) from Definition
and Lemma 3.1, we get a continuous map α∶ G/G × S → S, making the left square
commute. Obviously α is bijective, and π′ ○ (1, id) is a continuous right inverse
of α, thus α is a homeomorphism. If we apply Condition (ii) from Definition and
Lemma 3.1 to X ∶= G × S, Y ∶= G/G × S, Z ∶= G/ϑ(G × S), f ∶= π′, g ∶= π ○ ϑ, then
we get a well-defined continuous map β making the right square commute. The
map β is bijective. If we apply Condition (ii) from Definition and Lemma 3.1 to
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X ∶= ϑ(G × S), Y ∶= G/ϑ(G × S), Z ∶= G/G × S, f ∶= π, g ∶= π′ ○ ϑ−1, then we see
that β−1 is also continuous.

So the whole diagram commutes and consists of continuous maps. Thus

π ○ ϑ ○ (1, id) = β ○ α−1

is a homeomorphismus. Precomposition with the homomorphism y−1 yields the
statement.

Lemma 4.16.

A ∶= {Φ−1
S ∣ S is a small transversal submanifold}

is a smooth atlas on G/M.

Proof: We have already seen that A is a C0-atlas for G/M. Thus it remains to
check that the transition maps are smooth. thus consider two small transversal
submanifolds S and S̃, not necessarily running through a common point. The
ϑ-map for S̃ will be called ϑ̃. There are open subsets U ⊂○ S and Ũ ⊂○ S̃ such that

ϑ(G × Ũ) = ϑ(G × S) ∩ ϑ̃(G × S̃) = ϑ̃(G ×U) .

Let y∶U → V ⊃○ Rn−k and ỹ∶ Ũ → Ṽ ⊃○ Rn−k be two charts of U and Ũ . We get
charts as in Lemma 4.14 for G/M

Φ−1
S ∶ G/ϑ(G ×U) → V, Φ−1

S̃
∶ G/ϑ̃(G × Ũ) → Ṽ,

We have to show the smoothness of the transition map

Φ−1
S̃
○ΦS ∣Φ−1

s (ϑ(G×U))
∶Φ−1

S (ϑ(G ×U)) Ð→ Φ−1
S̃
(ϑ̃(G × Ũ))

which is the composition
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V U
y

≅ G ×U
(1, id)
prU

ϑ(G ×U)ϑ
≅

ϑ(G × Ũ)Ṽ Ũ
ỹ

≅ G × Ũ
(1, id)
prŨ

ϑ̃
≅

Thus the smoothness holds, as it is a composition of smooth maps.

Lemma 4.17. We equip G/M with the smooth structure of the preceding lemma.
Then π∶M → G/M is a submersion.

Proof: We fix a small transversal submanifold S with associated map ϑ. It is
sufficient to verify the submersion property of π on the open subset ϑ(G × S) as
such subsets cover all of M . Now, out of the commuting diagram in the proof of
Lemma 4.14, we get the following commuting diagram

G × S ϑ(G × S)

S G/ϑ(G × S)

ϑ

prS π

ρ

where the map ϑ is a diffeomorphism by the definition of “small transversal sub-
manifold” and where ρ ∶= β ○ α−1 is a diffeomorphism by the construction of the
smooth structure on G/M. As prS ∶ G × S → S is obviously a submersion.

The formula dim G/M = dimM − dimG is obvious from the construction of the
smooth structure on G/M. The proof of Theorem 4.1 is thus complete.
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5 Further examples

5.1 Frame bundles

For a Riemannian manifold (M,g) and p ∈ M we define PO(M,g)∣p as the set of
all orthonormal bases of (TpM,gp). The group O(n) acts on the right on this
bundle by the usual transformation of basis formula. In fact let (e1, . . . , en) be an
orthonormal basis, viewed as a row vector whose coefficients are vectors in TpM .
Let A = (aij) ∈ O(n), then one defines

(ẽ1, . . . , ẽn) ∶= (e1, . . . , en) ⋅A

by matrix multiplication, i. e., ẽj = ∑n
i=1 aijei. This right action is transitive and free,

and there is a unique smooth structure on PO(M,g)∣p such that O(n) → PO(M,g)∣p,

A ↦ (e1, . . . , en) ⋅ A is a diffeomorphism. We define PO(M,g) ∶=
●

⋃p∈M PO(M,g)∣p.
Then PO(M,g) carries a unique smooth topology, such that for any U ⊂○ M the
following property holds:

Let ei∶U → PO(M,g), i = 1,2, . . . , n be maps such that

E(p) ∶= (e1(p), . . . , en(p)) ∈ PO(M,g)∣p .

Then E is smooth as a map U → PO(M,g) if and only if ei is smooth as
a vector field on U for any i.

The group O(n) acts smoothly, freely, but no longer transitively on PO(M,g), and
the orbits are the subsets PO(M,g)∣p which are in fact submanifolds. One can check
that this action is proper, and we consider the quotient space, which is a smooth
manifold by Theorem 4.1. The “canonical”

I ∶M → PO(M,g)/O(n)

that maps p ∈ M to the orbit PO(M,g)∣p is a diffeomorphism. Usually one identi-
fies M with this quotient.

If M carries other structure than a Riemannian metric, one can often do similar
definitions for the structure group and the adapted bases.

Examples 5.1.
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1.) If M has no structure at all, we may take all frames. This yields PGL(M,g),
which is a manifold on which GL(n,R) acts smoothly, freely, and properly, and
such that M ≅ PGL(M,g)/GL(n,R) .

2.) If M has an orientation, we may take all positively oriented frames. This yields
PGL+(M,g), which is a manifold on which GL+(n,R) = {A ∈ Rn×n ∣ detA > 0}
acts smoothly, freely, and properly, and such that M ≅ PGL+(M,g)/GL+(n,R) .

5.2 Homogeneous spaces
Read this on May 17,
too

We now consider a Lie goup, and we assume that H is a subgroup of G that is
closed as a subset of the topological space G. We have already mentioned, that
this implies that H is also submanifold. We get an action of H on G as follows
a(τ, σ) ∶= ℓτ(σ) ∶= τσ for τ ∈H and σ ∈ G.

Lemma 5.2. The action H ↷ G by left multiplication as described above is a proper,
free and smooth action. The same holds for other left- and right-actions H ↷ G

given in Example 2.2 1.).

Proof: That the action is free and smooth is obvious. We will check properness
using Proposition 2.7.

So let us assume that (xi)i∈N is a sequence in G converging to x∞ ∈ G, and that
(σi)i∈N is a sequence in H, such that (σi ⋅xi)i∈N converges in G to y∞ ∈ G. It follows
that in G we have the limit

lim
i→∞

σi = lim
i→∞
(σi ⋅ xi ⋅ x−1

i ) = x∞ ⋅ y−1
∞ .

As H is closed, we have x∞ ⋅ y−1
∞ ∈ H. Thus (σi)i∈N converges in H to x∞ ⋅ y−1

∞ and
the statement follows with Proposition 2.7.

We now, let again be H a closed subgroup in a Lie group G. We consider the
manifold G/H , whose elements are left cosets, i. e., subsets of the form σ ⋅H where
σ ∈ G. Left multiplication turns G/H into a G-space with a transitive G action.
We want to argue, that every smooth G-space with a transitive action is of this
form, as shown in the following exercise. We will thus additionally assume in this
section from now on:

The topology of G is second countable
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This assumption is equivalent to the condition, that G has countably many con-
nected components.1 With this additional condition Sard’s theorem2 implies the
following

Proposition 5.3 (Consequence of Sard’s theorem). Let G be a Lie group with
countably many connected components acting transitively and smoothly on a smooth
manifold M , p ∈M , then the orbit map

sp∶G→M, σ ↦ σ ⋅ p

is a submersion.

With this information the following exercise can be solved:

Exercise 5.4. Let G be a Lie group acting smoothly and transitively on a manifold
M . Let H be the isotropy group of p ∈M . Show that there is a unique G-equivariant
diffeomorphism F ∶ G/H →M that maps 1 ⋅H to p.

Smooth G-spaces with a transitive G-action are called homogeneous spaces.
They are essentially given by the pair (G,H) where G is a Lie group and H a closed
subgroup. However, a given manifold M can be obtained in several ways as a homo-
geneous space G/H , thus one always has to consider M as a G-space. For example
as smooth manifolds we have S2n+1 ≅ O(2n + 2)/O(2n + 1) ≅ U(n + 1)/U(n) , but
this does not hold as homogeneous spaces, as it is a G-space for another G. However,
when one writes G/H , this is usually meant in the sense of G-spaces.

Homogeneous spaces are of tremendous importance, as they provide many exam-
ples, and there are man techniques and even computer programs to calculate many
properties, e. g., its curvature properties, the spectrum of the Laplace operator on
such spaces.

Definition 5.5. Let G be a Lie group acting smoothly and transitively on a manifold
M . Let H be the isotropy group of p ∈ M . Thus for any h ∈ H, ℓh∶M → M is a
diffeomorphism fixing p. We define its isotropy representation

I ∶H ↦ GL(TpM), h↦ dpℓh .

1In many analysis lectures, this assumption is considered anyhow.
2we do not want to prove or discuss this here and how to apply this. See [8] for a reference.
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Let again sp∶G→M , σ ↦ σ ⋅ p be the orbit map, and let H the isotropy group at
p. If p is a complement of h in g, i. e., if g = h⊕p, then the differential dsp∶g→ TpM

of the orbit map sp is an isomorphism. One thus often identifies M with G/H and
TpM with p. The isotropy representation is thus a map

I ∶H → GL(p) .

Lemma 5.6. Let (M,g) be a Riemannian manifold, and assume that G ↷M is a
smooth, transitive and isometric action. If the isotropy representation is irreducible,
i. e., if there is no H-invariant linear subspace W ⊂ TpM with {0} ≠ W ≠ TpM ,
then M is an Einstein manifold, i. e., there is a λ ∈ R, such that ric = λg.

Proof: As the action is isometric, the isotropy representation is a map H →
O(TpM). For any h ∈ H we have I(h)∗gp = gp and I(h)∗ricp = ricp, thus also
Ricp ○I(h) = I(h) ○ Ricp. As the endomorphism Ricp is symmetric, it is diago-
nalizable. Let λ be an eigenvalue of Ricp and define W ∶= ker(Ricp −λ id) as the
corresponding eigenspace. As I(h) and Ricp commute, we get (I(h))(W ) ⊂ W .
Thus W is invariant under the action of G given by I. We assumed that {0} and
TpM are the only invariant linear subspaces, and as W ≠ {0} by the choice of λ, we
have W = TpM . Thus ricp = λgp.

Now consider any point q ∈M , and we write q = σ−1 ⋅ p, σ ∈ G. As ℓσ acts isomet-
rically we have ℓ∗σgp = gq and ℓ∗σ ricp = ricq. Thus we have ricq = λgq for all q ∈M .

Example 5.7. We consider the Lie group SU(3) with a bi-invariant Riemannian
metric g. The adjoint representation Ad∶SU(3) → GL(su(3)) turns su(3) into an
SU(3)-space. It has no non-trivial3 linear subspace W invariant under the SU 83)
action. This implies that the bi-invariant metric is unique up to a constant. We
may normalize g such that

⎛
⎜⎜⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟⎟⎟
⎠
∈ su(3)

has length 1.

The scalar product on su(3) ⊂ C3×3 is then

⟨A,B⟩ = 1
2 tr(A∗B)

3Such a subspace is trivial if W = {0} or W = su(3).
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I Lie groups and quotients

As then SO(3) is a closed subgroup of SU(3), consisting of those matrices in
SU(3), where all coefficients are real. The quotient M ∶= SU(3)/SO(3) is called
the Wu manifold4, and plays an important role in bordism theory. The manifold
carries a quotient metric, denoted as g, and dimM = 5.

We define p as the orthogonal complement of h in g, namely

p = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

i 0 0
0 −i 0
0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 0
0 i 0
0 0 −i

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 i 0
i 0 0
0 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 i

0 0 0
i 0 0

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

0 0 0
0 0 i

0 i 0

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

One may check5 that the action of SO(3) on p has no non-trivial invariant linear
subspaces. Thus (M,g) is an Einstein manifold. One can check that ricg = 6g.

5.3 Bi-quotients

We assume that G is a compact connected Lie group, and H a closed subgroup.
As discussed above the associated homogeneous space G/H is a G-space. It may
happen that a subgroup K of G still acts freely on on G/H . Then the bi-quotient

K /G/H

is a smooth manifold. This gives rise to interesting examples, as e. g., the Gromoll-
Mayer sphere, see https://ncatlab.org/nlab/show/Gromoll-Meyer+sphere. This
is a compact 7-dimensional manifold, homeomorphic, but not diffeomorphic to S7,
and it carries a metric with sectional curvature K ≥ 0.

6 Riemannian submersions and the O’Neill formula
Tu 14.5.

Notes on literature for this section:

• [3, Chap. 9]: a good and deep, but not easily readable reference

• [9, Chap. 7, Def. 44 and following], textbook by O’Neill, but no proofs

• [10], original article by O’Neill including proofs
4In fact it belongs to the family SU(n)/SO(n) of so-called Landweber’s manifolds
5proof omitted here!
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6 Riemannian submersions and the O’Neill formula

Definition 6.1 (Riemannian submersion). Let (M,g) and (B.h) be Riemannian
manifolds, m = dimM , n = dimB, and f ∶M → B a submersion. For any p ∈M we
define the vertical space at p as Vp ∶= ker dpf which is a vector space of dimension
n −m. Then V ∶= ⋃p∈M Vp is a submanifold of TM of dimension n. Further we
define the horizontal space at p as

Hp ∶= (Vp)⊥ = {X ∈ TpM ∣X ⊥ Vp} .

The map f is called a Riemannian submersion if

∀p ∈M ∶ dpf ∣
Hp

∶Hp → Tf(p)B (6.1)

is an isometry.

We can decompose any X ∈ TpM as

X =Xver +Xhor, Xver ∈ Vp, Xhor ∈ Hp .

Further we denote the orthogonal projections as πhor∶TM →H and πver∶TM → V .

Γ(V) ∶= {X ∈ X(TM) ∈ ∀p ∈M ∶X|p ∈ Vp}

Γ(H) ∶= {X ∈ X(TM) ∈ ∀p ∈M ∶X|p ∈ Hp}
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A Mathematical Appendices

A.1 Supplements from the theory of smooth
manifolds

A.1.1 The Koszul formula

Let (M,g) be a semi-Riemannian manifold. We write ⟨X,Y ⟩ for g(X,Y ). In the
lecture “Differential Geometry I” we have shown that there is a unique connection ∇
on TM , called the Levi–Civita connection such that it is metric and torsionfree.

We give here a version of the Koszul identity that differs slightly from the one
given in that lecture. It gives a formula for the Levi–Civita connection.

Lemma A.1.1 (Koszul formula). For X,Y,Z ∈ X(M) we have

2 ⟨∇XY,Z⟩
= ∂X ⟨Y,Z⟩ + ∂Y ⟨X,Z⟩ − ∂Z ⟨X,Y ⟩
+ ⟨[X,Y ], Z⟩ − ⟨[Y,Z],X⟩ + ⟨[Z,X], Y ⟩

In order to prove this lemma, one verifies that the right hand side defines a
connection that is torsionfree and compatible with the metric.

The proof of this Lemma is given, e.g., in [4, Eq. (9) in Proof of Theorem 3.6].
It is also worked out in [1, Def. 2.7.2] for submanifolds of Rn, but the same proofs
also works for arbitrary semi-Riemannian manifolds.

A.1.2 A lemma on surjective submersions

Lemma A.1.2. Let f ∶ X → Y be a surjective submersion from the C∞-manifold
X to the C∞-manifold Y , and let Z be a further C∞-manifold. Let h ∶ Y → Z be a

I



A Mathematical Appendices

map. Then h is smooth if and only if h ○ f is smooth.

Proof: It is obvious that h ○ f is smooth if h is smooth, as every submersion is by
definition a smooth map.

Now assume that h ○ f is smooth. For a given y ∈ Y we want to show that h is
smooth on a neighborhood of y. As y may be arbitrarily chosen, this then implies
that h is smooth.

Let n ∶= dimX and k ∶= dimY .

At first we choose a preimage x ∈ X of y, i.e. f(x) = y. (Here we use the
surjectivity of f .) We choose a chart φ̃0 ∶ Ũ0 → Ṽ0 of Y with y ∈ Ũ0, then we choose
a chart φ0 ∶ U0 → V0 of X with x ∈ U0

We obtain a smooth map F ∶ V1 → Ṽ0, F ∶= φ̃0 ○ f ○ φ−1
0 , V1 ∶= V0 ∩ φ0(f−1(Ũ0)).

As df ∣x ∶ TxX → TyY is surjective, we see that d(φ̃0 ○ φ−1
o )∣φ0(x) is surjective. The

implicit function theorem thus says that there is a small neighborhood V2 of φ0(x) in
V1, a diffeomorphism ψ ∶ V2 →W1×W2, W1 open in Rk, W2 open in Rn−k, that there
is an open neighborhood Ṽ2 of φ̃0(y) in Ṽ0 and a diffeomorphism ψ̃ ∶ Ṽ2 →W1, such
that ψ̃ ○F ○ψ−1 ∶W1 ×W2 →W1 is the projection to W1, i.e. ψ̃ ○F ○ψ−1(x1, x2) = x1

where xi ∈Wi.

In the following diagram all symbols ⊂○ denote open subsets.
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1. Supplements from the theory of smooth manifolds

Xn Y k

U1 ∶= U0 ∩ f−1(Ũ0) Ũ0

V1 = V0 ∩ φ0(f−1(Ũ0)) Ṽ0

V2 Ṽ2

W1 ×W2 W1

Rn Rk

f

f ∣U1

F

F ∣V2

prW1

prRk

⊂○ ⊂○

φ0 φ̃0

⊂○ ⊂○

ψ ψ̃

⊂○ ⊂○

We set U ∶= φ−1
0 (V2), Ũ ∶= φ̃0(Ṽ2), φ ∶= ψ ○φ0 ∶ U →W1 ×W2, φ̃ ∶= ψ̃ ○ φ̃0 ∶ Ũ →W1.

Then φ ∶ U →W1×W2 and φ̃ ∶ Ũ →W1 are charts with x ∈ U and y ∈ Ũ . Furthermore
φ̃ ○ f ○ φ−1 ∶W1 ×W2 →W1 is the projection prW1 to W1.
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Xn Y k

U Ũ

W1 ×W2 W1

Rn Rk

Z

f

f ∣U

prW1

prRk

⊂○ ⊂○

φ φ̃

⊂○ ⊂○

h

h ○ φ̃−1

Now as h ○ f is smooth, h ○ f ○φ−1 ∶W 1 ×W2 → Z is smooth as well. As the map

h ○ f ○ φ−1 = (h ○ φ̃−1) ○ prW1 ∶W 1 ×W2 → Z

is smooth, it is in particular smooth in the W1 direction (for fixed element in W2),
but this is just the map h ○ φ̃−1) →W1, which is thus smooth. This implies that h∣Ũ
is smooth.
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