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Preface
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and (semi-)Riemannian gemetry, as taught typically in a one-semester lecture, this
includes e. g., the theorems by Hopf–Rinow, Bonnet–Myers and Cartan–Hadamard.
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I Lie groups and quotients
Tue. 16.4.

The goal of this section is to treat Lie groups, which are defined as manifolds
with a compatible group structure. Important examples are O(n), SO(n), U(n),
GL(n,R), . . .

Lie groups provide many more examples of Riemannian (and more generally semi-
Riemannian) manifolds.

1 Lie groups and Lie algebras

Literature for this section: [5], [7], [1], [3], [2]

1.1 Lie groups and their homomorphisms

Definition 1.1. A Lie group consists of a C∞-manifold G together with a smooth
map µ∶G ×G→ G, (σ, τ)↦ µ(σ, τ) = στ = σ ⋅ τ , called multiplication, such that

(i) (G,µ) is a group

(ii) G ×G µ̃Ð→ G, (σ, τ)↦ σ−1τ =∶ µ̃(σ, τ) is smooth.

As a consequence of (ii) we see that the following maps are smooth

ℓσ ∶G→ G, τ ↦ στ (left multiplication or left translation

rσ ∶G→ G, τ ↦ τσ (right multiplication or right translation)

inv∶G→ G, τ ↦ τ−1 (inversion)

µ∶G ×G µÐ→ G, (σ, τ)↦ στ (multiplication)

Note also that Diff. geom. I, Exercise Sheet 3, Exercise 4 tells us that one can
replace (ii) by
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I Lie groups and quotients

(ii’) µ∶G ×G µÐ→ G, (σ, τ)↦ στ is smooth

We write 1 for the neutral element of G. Then T1G is called the Lie algebra of
G. It is a vector space that comes with some additional structure discussed below,
a “Lie bracket”.

Examples 1.2.

1.) A finite-dimensional real vector space is a Lie group, if µ is the addition.

2.) C∗, S1 ⊂ C∗, R∗ are Lie groups, if µ is the multiplication.

3.) GL(n,R) is a Lie group, where µ is matrix multiplication. We view GL(n,R)
as an open subset and thus as an n2-dimensional submanifold of Rn×n.

4.) SL(n,R) ∶= {A ∈ Rn×n ∣ detA = 1}.
In order to show that SL(n,R) is a submanifold of GL(n,R) we show that
the determinant det∶GL(n,R)→ R∗ is a submersion, i.e. dA det∶TA GL(n,R)→
Tdet AR∗ ≅ R is surjective for all A ∈ GL(n,R). It follows from this, that det−1(t)
is a submanifold for any t ∈ R∗. For t = 1, this shows that SL(n,R) = det−1(1)
is a submanifold.

(a) Let B = (bij)ij ∈ GL(n,R), C(t) ∶= 1 + tB = (cij(t))ij = (δij + tbij)ij.

d
dt ∣t=0

det(1 + tB) = d
dt ∣t=0

detC(t)

= ∑
σ∈Sn

sgn(σ) d
dt ∣t=0

(c1σ(1)(t)⋯cnσ(n)(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 for σ≠id

(∗)= d
dt ∣t=0

((1 + tb1σ(1))⋯(1 + tbnσ(n)))

(+)= d
dt ∣t=0

(1 + t(b1σ(1) +⋯ + tbnσ(n)) + P≥2(t))

= b1σ(1) +⋯ + tbnσ(n)

= trB

Here we used at (∗) and above that for σ ≠ id there are i ≠ j with ciσ(i)(0) =
cjσ(j)(0) = 0, and after (+) we write P≥2(t) for a polyomial in t without constant
and without a linear term, i. e., one only with monomials of degree ≥ 2.
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I Lie groups and quotients

(b) For A ∈ GL(n,R) we calculate

d
dt ∣t=0

det(A + tB) = d
dt ∣t=0

det(A ⋅ (1 + tA−1B))

= (detA) ⋅ d
dt ∣t=0

det(1 + tA−1B)

= (detA) ⋅ tr(A−1B)

We conclude

dA det(B) = d
dt ∣t=0

det(A + tB)

= (detA) ⋅ tr(A−1B).

The linear map dA∶Rn×n → R is surjective as

dA(A) = (detA) tr1 = n ⋅ detA ≠ 0 .

Now, we now that SL(n,R) is a submanifold. Its multiplication is the restric-
tion of the multiplication in GL(n,R), thus mutiplication is smooth as a map
µ∣SL(n,R)×SL(n,R)∶SL(n,R) × SL(n,R) → GL(n,R). The image of µ∣SL(n,R)×SL(n,R)
is a subset of the submanifold SL(n,R) ⊂ GL(n,R), and this implies the smooth-
ness of µ∣SL(n,R)×SL(n,R)∶SL(n,R) × SL(n,R)→ SL(n,R).

Further we have

T1 SL(m.R) = {A ∈ Rn×n ∣ trA = 0}.

5.) The groups SO(n), O(n), U(n) and SU(n) are Lie groups, see Exercise Sheet 1,
Exercise 2

6.) If G and H are Lie groups, then G×H with the product manifold structure and
the product group structure

(G ×H) × (G ×H)→ G ×H
((σ, τ), (σ̃, τ̃))↦ (σσ̃, τ τ̃)

is again a Lie group.
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I Lie groups and quotients

7.) Let Γ be a discrte subgroup of Rn, e. g., Γ = Zn or another lattice1 or another
discrete subgroup. If we equip Rn/Γ with the usual addition of equivalence
classes, called µ, then (Rn/Γ, µ) is a Lie group.

Definition 1.3. A homomorphism of Lie groups or a Lie group homomor-
phism is a smooth map f ∶G → H, for G and H Lie grous, that is also a group
homomorphism. The map f is a Lie group isomorphism if it is additionally
a diffeomorphism, it is a Lie group endomorphism if additionally G = H, and
it is a Lie group automorphism if G = H and if f is a diffeomorphism. We
write Hom(G,H), Iso(G,H), End(G), Aut(G) for the sets/monoid/groups of such
homorphisms.

Examples 1.4.

1.) The inclusions SO(n) ↪ O(n), U(n) ↪ O(2n), etc. are Lie group homomor-
phisms

2.) detK GL(n,K)→ K≠0 is a Lie group homomorphism for K = R and K = C.

3.) For any σ ∈ G, conjugation by σ

Cσ ∶GÐ→ G

τ z→ στσ−1

is a Lie group automorphism, and C ● ∶G → Aut(G), g ↦ Cg is a group homo-
morphism. We obviously have

Cσ = ℓσ ○ rσ−1 = rσ−1 ○ ℓσ . (1.1)

Remarks 1.5.

1.) If G is a Lie group, one might be tempted to define a Lie subgroup as a subgroup
H of G such that H is a submanifold as well. However, this is not what one
usually does. One says that H ⊂ G is a Lie subgroup, if there is a Lie
group homomorphism f ∶ H ′ → G, that is injective and an immersion, such
that H = image(f). For example consider G = R2/Z2 and f(t) = [t, αt] for
some α ∈ R ∖ Q. Then f ∶ R → G is an injective immersion and a Lie group

1A lattice in Rn is by definition a discrete subgroup Γ of Rn, isomorphic to Zn. It follows that
Rn/Γ is a compact manifold (without boundary), and that there is an A ∈ GL(n,R) with
Γ = A ⋅Zn.
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I Lie groups and quotients

homomorphism, but H ∶= image(f) is not a submanifold in the usual sense:
a submanifold is always a locally closed subset, but H is not a locally closed
subset of G. This leads in books on Lie group, as e. g., in [7, Definition 1.27 (b)]
to a slightly generalized definition of a submanifold, however we do not want to
elaborate too much on this.

2.) The closed subgroup theorem, see [7, Theorem 3.42], states: Let G be a Lie
group, and let H be a subgroup of G (in the sense of group theory) that is closed
as a subset, then H is a submanifold of G. It follow any closed subgroup H

of G is a Lie group (with induced differentiable structure and induced group
structure). Although this result is rather simple to state, the proof is a bit
involved. Thus we will not prove it here.

1.2 Lie algebras and their homomorphisms

Let us recall the following exercise from last semester:

Exercise 1.6 (Diff. geom. I, Exercise Sheet 7, Exercise 2). Let F ∶ M → N be a
smooth map between smooth manifolds M and N . Let X,Y (resp. X̃, Ỹ ) be (smooth)
vector fields on M (resp. N). We say that X is F -related to X̃ if dF ○X = X̃ ○F
holds on M .
Show that, if X is F -related to X̃ and Y is F -related to Ỹ , then [X,Y ] is F -related
to [X̃, Ỹ ].

Definition 1.7. A vector field X ∈ X(G) is called left-invariant if for all σ ∈ G
we have dℓσ(X) =X ○ ℓσ, i. e., if the diagram

G G

TG TG

ℓσ

X X

dℓσ

commutes. Similarly X is called right-invariant if for all σ ∈ G we have drσ(X) =
X ○ rσ. If X is left- and right-invariant, we say X is bi-invariant.
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I Lie groups and quotients

Using the language of Exercise 1.6, we see that a vector field X ∈ X(G) is left-
invariant (right-invariant, resp.), if, and only if, it is ℓσ-related (rσ-related, resp.)
to itself for any σ ∈ G.

Remarks 1.8.

1.) For any X0 ∈ T1G there is a unique left-invariant vector field X ∈ X(G) with
X ∣

1
=X0. The uniqueness follows from the calculation

X|σ =X ○ ℓσ(1) = (dℓσ ○X)(1) = dℓσ(X|
1
) = dℓσ(X0) . (1.2)

On the other hand if we use (1.2) to define X, i. e., if we set X|σ ∶= dℓσ(X0),
then this vector field is the composition

G
(id,X0)ÐÐÐÐ→G × TGÐ→ TG

σ z→ (σ,X0) z→ dℓσ(X0)

which is obviously smooth in σ. In order to show that the vector field X thus
obtained is left-invariant we calculate for any fixed τ ∈ G

X ○ ℓτ(σ) =X ∣τσ

(def)= dℓτσ(X0)
(∗)= dℓτ(dℓσ(X0))

(def)= dℓτ(X ∣σ)

where we used the chain rule d(f ○ g) = (df) ○ (dg) at (∗), and thus we have
X ○ ℓτ = dℓτ ○X for all τ ∈ G.

2.) The analogous statement holds as well if we replace left-invariance by right-
invariance.

3.) With Exercise 1.6 we see: if X,Y ∈ X(G) are left-invariant (right-invariant,
resp.) vector fields, then [X,Y ] is also left-invariant (right-invariant, resp.)

Definition 1.9 (Lie bracket on the Lie algebra). Let G be a Lie group with Lie
algebra T1G. The vectors X0, Y0 ∈ T1G are extended to left-invariant vector fields X
and Y . We define

[X0, Y0] ∶= [X,Y ]∣
1

.

This defines a bilinear map [ ● , ● ]∶T1G×T1G→ T1G, called the Lie bracket on the
Lie algebra T1G of G.

Fr. 19.4.

The pair (T1G, [ ● , ● ]) satisfies the defining properties of a Lie algebra over R,
which are defined as follows:
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I Lie groups and quotients

Definition 1.10 (Abstract Lie algebra). Let K be a field and g a K vector space.
A bilinear map [ ● , ● ]∶g × g→ g is called a Lie bracket on g if it satisfied

(i) Alternation: for all x ∈ g we have [x,x] = 0

(ii) Jacobi identity: for all x, y, z ∈ g we have

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 .

The pair (g, [ ● , ● ]) is then called a Lie algebra (over K).

If the characteristic of K is not 2 – and the field K = R we are interested in the
case that K is of characteristic 0 –, then condition (i) is equivalent to

(i’) Antisymmetry: for all x, y ∈ g we have [x, y] = −[y, x].

(In characteristic 2 (i’) still implies (i), but the converse is no longer true.)

A Lie subalgebra of g is a linear subspace of g that is closed under the Lie-
bracket, i. e., then it is itself a Lie algebra.

It is obvious that the Lie bracket on T1G defined in Definition 1.9 satisfies (i’)
(or equivalently (i)). The Jacobi identity follows immediately in this situation from
Exercise 1.6.

Usually for a Lie group the associated Lie algebra, viewed as a vector space with
Lie bracket, is denoted by the the associated small fraktur (= gothic) letters, e. g.,

Lie group G H GL(n,R) O(n) SO(n) GL(n,C) U(n)
Lie algebra g h gl(n,R) o(n) so(n) gl(n,C) u(n)

We also will often write Lie(G) for the Lie algebra of G, e. g., g = Lie(G), h =
Lie(H), etc.

Examples 1.11.

1.) If we consider G ∶= Rn as a Lie group with µ(x, y) = x+y, then the left-invariant
vector fields are the constant ones. As the Lie bracket of constant vector fields
vanishes, the Lie bracket on the Lie algebra is the zero map 0∶Rn × Rn → Rn.
Thus the Lie algebra is (Rn,0).

2.) Let V be a finite-dimensional real vector space. We denote the vector space
automorphisms of V by GL(V ). By choosing a basis of V , and identify V ≅ Rn,
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I Lie groups and quotients

GL(V ) ≅ GL(n,R) we get a Lie group structure on GL(V ), independent of the
choice of basis above. Let us write Endlin(V ) for the vector space endomor-
phisms of V . We have GL(V ) = det−1(R ∖ {0}) for det∶Endlin(V ) → R, thus
GL(V ) is open in Endlin(V ). We obtain gl(V ) ∶= Tid GL(V ) ≅ Endlin(V ).

The left-invariant extension of X0 ∈ Tid GL(V ) ≅ Endlin(V ) is X ∣A ∶= A ↦
A ○ X0 ∈ TA GL(V ) ≅ Endlin(V ), X ∈ X(GL(V )). We proceed similarly for
Y0 ∈ Tid GL(V ) and Y ∈ X(GL(V )). Then

∂XY ∣A = A ○ ∂X0 ∣A(B ↦ B ○ Y0) = A ○X0 ○ Y0

∂YX ∣A = A ○ ∂Y0 ∣A(B ↦ B ○X0) = A ○ Y0 ○X0

[X,Y ]∣A = ∂XY ∣A − ∂YX ∣A = A ○ (X0 ○ Y0 − Y0 ○X0)

[X0, Y0] = [X,Y ]∣id =X0 ○ Y0 − Y0 ○X0 .

Thus the Lie algebra structure on Tid GL(V ) ≅ Endlin(V ) is given by (X0, Y0)↦0

○Y0 −Y0 ○X0, i. e., [ ● , ● ] is the usual commutator in Endlin(V ), usually denoted
by [ ● , ● ] as well.

Definition 1.12 (Lie algebra homomorphism). Let (g, [ ● , ● ]g) and (h, [ ● , ● ]h) be
Lie algebras. A homomorphism of Lie algebras or a Lie algebra homomor-
phism is a linear map f ∶g→ h such that for all x, y ∈ g:

f([x, y]g) = [f(x), f(y)]h .

Writing g for (g, [ ● , ● ]g) and h for (h, [ ● , ● ]h), we denote by Hom(g,h) the set of
all Lie algebra homomorphisms. And similarly to Definition 1.3 we define isomor-
phisms, endomorphisms, automorphisms and Iso(g,h), End(g) and Aut(g).

Proposition 1.13. Let G and H be Lie groups and let f ∶G → H be a Lie group
homomorphism. Then

d1f ∶g→ h

is a Lie algebra homomorphism.

Proof: Assume X0, Y0 ∈ g. We extend X0 (resp. Y0) to a left-invariant vector
field X ∈ X(G) (resp. Y ∈ X(G)), i. e., X ∣σ = d1ℓσ(X0) for all σ ∈ G. Also extend
X̂0 ∶= d1f(X0) ∈ h to a left-invariant vector field X̂ ∈ X(H), and define similarly Ŷ0

and Ŷ . Thus X̂ ∣σ = d1ℓσ(X̂0) for all σ ∈H.
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I Lie groups and quotients

For σ, τ ∈ G we have (f ○ ℓσ)(τ) = f(στ) = f(σ)f(τ) = ℓf(σ)(f(τ)), thus f ○ ℓσ =
ℓf(σ) ○ f . We calculate for σ ∈ G.

(dσf)(X ∣σ) = (dσf ○ d1ℓσ)(X0) = d1(f ○ ℓσ)(X0)

= d1(ℓf(σ) ○ f)(X0) = d1ℓf(σ) ○ d1f(X0)
= d1ℓf(σ)X̂0 = X̂ ∣f(σ) .

As a result df ○X = X̂ ○ f . And similarly we get df ○Y = Ŷ ○ f . Thus we have just
shown that

G H

TG TH

f

X,Y X̂, Ŷ

df

commutes. This means that X resp. Y is f -related to X̂ resp. Ŷ – in the language
of Exercise 1.6. It follows from this exercise that [X,Y ] is also f -related to [X̂, Ŷ ].
Thus

d1f([X0, Y0]) = (df ○ [X,Y ])∣
1

= ([X̂, Ŷ ] ○ f)∣
1

= [X̂, Ŷ ]∣
1

= [X̂0, Ŷ0] = [df1(X0),df1(Y0)],

which is the statement of the proposition.

Corollary of Proposition 1.13. Assume that V is a finite-dimensional real vector
space. Let G be a subgroup and submanifold of GL(V ). Let g be the Lie algebra of
G. Then the Lie-bracket on g is the commutator bracket on End(V ).

Proof: We have seen in Example 1.11 2.) that the Lie bracket on gl(V ) is the
commutator bracket of Endlin(V ). The Lie group homomorphism i∶G → GL(V )
induces an injective Lie algebra homomorphism di∶g→ gl(V ), thus g the Lie brackt
of gl(V ) restricts to the one on g.
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1.3 Adjoint representations

Let G be a Lie group with Lie algebra g = T1G. For a given σ ∈ G we differentiate
Cσ ∶G → G at 1 and we obtain Adσ ∶= d1Cσ ∶g → g, which is obviously a linear map.
For σ, τ ∈ G differentiating Cστ = Cσ ○Cτ implies Adστ = Adσ ○Adτ .

Lemma 1.14. For σ ∈ G the map Adσ ∶g→ g is a Lie algebra automorphism.

Proof: Apply Proposition 1.13 to the Lie group homomorphism Cσ ∶G→ G.

Definition 1.15 (The adjoint representation of a Lie group). The group homomor-
phism obtained this way

Ad∶G→ Aut(g)

is called the adjoint representation of the Lie group G.

Remarks 1.16.

1.) One can show that Aut(g) is itself a Lie-group, in fact a Lie subgoup of the
group GL(g) of vector space automorphisms.

2.) The Lie algebra of Aut(g) is the Lie algebra Der(g) of derivations of g. A linear
map D∶g → g, where g is a Lie algebra, is called a derivation of g, if for all
x, y ∈ g we have

D([x, y]) = [D(x), y] + [x,D(y)] .

Thus we have aut(g) = Der(g).

We will not prove these statements here, as they will not be used in what follows
and they are easier to prove later.

Definition 1.17 (The adjoint representation of a Lie algebra). The differential at 1
of Ad∶G→ GL(g), namely

ad ∶= d1 Ad∶g→ gl(g), X ↦ adX = d1(σ ↦ Adσ)(X)

is called the adjoint representation of the Lie algebra g.

Accoding to Remarks 1.16 the adjoint representation of a Lie algebra is in fact a
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Lie algebra homomorphism

ad∶g→ aut(g) = Der(g) .

Lemma 1.18. Let g be the Lie algebra of a Lie group. Then the adjoint map ad
satisfies. adX(Y ) = [X,Y ]

The proof will be given later. Tue. 23.4.

1.4 The exponential map

In the following t ∈ R, so ∂t ∶= d
dt is the positively oriented vector field on R of

constant length 1. For a smooth map f ∶R →M we also write ḟ(t) = df(∂r∣t). We
write Diff(M) for the group of diffeomorphisms of M .

Definition 1.19. Let M be a manifold and X ∈ X(M). A curve γ∶ I →M is called
integral curve of X or flow line of X, if for all t ∈ I we have

γ̇(t) =X ∣γ(t) .

The theorem of Picard-Lindelöf implies: For any p ∈ M there is an integral curve
γp of X with γp(0) = p and we assume that γp is defined on its maximal domain Ip,
and this maximal solution is unique. We say that X is complete if Ip = R for all
p ∈M . We also define ΦX

t (p) ∶= γp(t). Thus if X is complete, then we have a group
homomorphism ΦX● ∶R→ Diff(M), t↦ ΦX

t , called the flow of X.

We encourage the reader to check that t↦ ΦX
t is indeed a group homomorphism.

Lemma 1.20. For a left-invariant vector field X on a Lie group we have:

(1) X is complete,

(2) If γ is an integral curve of X, and σ ∈ G, then ℓσ ○ γ is an integral curve of X
as well,

(3) ΦX
t (στ) = σΦX

t (τ) for t ∈ R, σ, τ ∈ G.

(4) ΦλX
t = ΦX

λt for all λ, t ∈ R.

In the proof we use the conventions ∞+ t ∶=∞ and −∞+ t = −∞ for all t ∈ R.
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Proof: Let G be a Lie group and let X ∈ X(G) be a left-invariant vector field.
Consider the integral curve γ1∶ I1 → G, with γ1(0) = 1, I1 = (α,ω). For any σ ∈ G
we calculate that the curve ℓσ ○ γ1 is also an integral curve of X:

d
dt (ℓσ ○ γ1(t)) = dℓσ (γ̇1(t)) = dℓσ(X ∣γ1(t)) =X ∣ℓσ○γ1(t)

.

Thus γσ ∶= ℓσ ○ γ1∶ (α,ω) → G is the intergral curve with γσ(0) = σ. This already
shows (2).

Now for t0 ∈ (α,ω) we have

γ1(t0) = γγ(t0)(t0 − t0),

thus γ1 and γγ1(t0)( ● −t0) coincide, including their maximal domains. Hence (α,ω) =
(α + t0, ω + t0), hence α = −∞ and ω =∞. This proves the completeness, i. e., (1).

The statement (3) follows from the facts that both t ↦ ΦX
t (στ) and t ↦ σΦX

t (τ)
are integral lines for X and that they coincide for t = 0.

In the notation above, and for any σ ∈ G we have ΦX
λt(σ) = γσ(λt). We calculate

with the chain rule

d
dtγσ(λt) = λγ̇σ(λt) = λ(X ∣

γσ(λt)
) = (λX)∣

γσ(λt)

Thus ↦ ΦX
λt(σ) is the integral curve of λX that attains σ for t = 0. Thus, by defi-

nition of ΦλX
t , we have (4).

Definition 1.21. A homomorphism f ∶R→ G is called a 1-parameter subgroup
of G.

Remark. Note that in general f(R) is in general not a submanifold (in the usual
sense2) ofG, but it is a submanifold in the generalized sense of [7], see Remark 1.5 1.).
This explains the usage of the word “subgroup”.

Proposition 1.22. Let G be a Lie group. Then the 1-parameter subgroups are the
integral curves of some left-invariant vector field through 1. More precisely:

(1) Let f ∶R→ G be a 1-parameter subgroup, and take the left-invariant vector field
X ∈ X(G) such that ḟ(0) =X ∣

1
. Then f is the integral curve of X with f(0) = 1.

2i. e., in the sense of Analysis IV, Differential Geometry I, etc
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(2) Let X be a left-invariant vector field and f ∶R→ G an integral curve of X with
f(0) = 1. Then f is a 1-parameter subgroup.

It follows, that two 1-parameter subgroups f1, f2∶R → G coincide if and only if
ḟ1(0) = ḟ2(0).

Proof:

“(1)”: Obviously f(0) = 1. As f is a homomorphism f(t + ● ) = ℓf(t) ○ f . Thus

ḟ(t) = d
dt ∣0

f(t + ● ) = d
dt ∣0

ℓf(t) ○ f = dℓf(t)(ḟ(0)) = dℓf(t)(X ∣
1

) =X ∣f(t) .

Thus f is an integral curve of X.

“(2)”: Obviously f is smooth. It is defined on R due to Lemma 1.20 (1). By defini-
tion of the flow we have f(t) = ΦX

t (1), and thus we calculate, using Lemma 1.20 (1)
at (∗)

f(t + s) = f(s + t) = ΦX
s+t(1) = ΦX

s (ΦX
t (1)) = ΦX

s (f(t))
(∗)= f(t)ΦX

s (1) = f(t)f(s) .

Thus f is a Lie group homomorphism.

Definition 1.23. Let G be a Lie group with Lie algebra g. We write X for the
left-invariant vector field extending X0 ∈ g. The exponential map exp is defined
as the map

exp∶g→ G, X0 ↦ ΦX
1 (1) .

WARNING. This exponential map is in general not the same as the Riemannian
exponential map, even if we know that the metric is left- or right-invariant.3. As a
consequence this map is also called the Lie group exponential map in order to
distinguish it from the (semi-)Riemannian exponential map. It does however –
as will be shown in the exercises – coincide with the Riemannian one for bi-invariant
metrics on Lie groups.

Theorem 1.24 (Properties of the exponential map). Let G be a Lie group with Lie
algebra fg, and X ∈ g, t, s ∈ R. Then we have

3The notions of left-, right-, and bi-invariant Riemannian metrics are defined in the exercises.
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(1) exp is smooth and with our usual identification T0g ≅ g, its differential d0 exp
is the identity of g. As a consequence there is an open neighborhood U of 0, such
that exp ∣U ∶U → exp(U) is a parametrization.

(2) exp(tX) = ΦX
t (1)

(3) t ↦ exp(tX) =∶ fX(t), R → G is a 1-parameter subgroup of G and any 1-
parameter subgroup is of that form for some X ∈ g. Furthermore ḟX(0) =X.

(4) The integral curves of the left-invariant vector field associated to X are, the
curves t↦ σ exp(tX) for σ ∈ G

(5) If X is the left-invariant vector that extends X ∈ g, then for all t ∈ R we have

ΦX
t = rexp(tX) .

Proof:

“(1)”: The smoothness of exp follows from the smooth dependence on the initial
conditions in the theorem of Picard–Lindelöf. We calculate for the left-invariant
vector fields X ∈ X(G) extending X ∈ g.

(d1 exp)(X) = d
dt ∣t=0

(exp(tX)) = d
dt ∣t=0

ΦX
t (1) =X ∣

1

=X .

Thus d1 exp = idg.

“(2)”: It follows from Lemma 1.20 (4) that exp(tX) = ΦtX
1 (1) = ΦX

t (1).

“(3)”: This immediately follows from Proposition 1.22.

“(4)”: The integral curves in this item are t↦ ΦX
t (σ) and we have seen in Lemma 1.20

(4) that ΦX
t (σ) = ℓσ(ΦX

t (1)) = ℓσ ○ exp(tX).

(5) immediately follows from (4) and the definition of ΦX
t .

Example 1.25 (Exponential map of matrix groups). We consider again the Lie
group GL(V ) for a finite-dimensional real vector space V . We have already seen in
Example 1.11 2.) that the left-invariant extension of X0 ∈ g is X ∈ X(GL(V )) with
X ∣A = A ⋅X0, A ∈ GL(V ).

For A ∈ gl(V ) we know from the theory of ordinary differential equations, that

Page 14 Differential Geometry II



I Lie groups and quotients

the series
EXP(A) ∶=

∞
∑
i=0

1
i!A

i (1.3)

converges (uniformly on compact sets and also all derivatives converge uniformly
on compact sets). We obtain a map EXP∶gl(V ) → GL(V ) such that for t, s ∈ R,
A ∈ gl(V )

EXP((t + s)A) = EXP(tA)EXP(sA), EXP(0) = 1, EXP(−A) = EXP(A)−1 .

Thus t↦ EXP(tA) a 1-parameter subgroup, and

d
dt ∣t=0

EXP(tA) = A

It follows from Proposition 1.24 (3) that EXP(A) = exp(A). So we will write exp
instead of EXP from now on. The same holds if G is a submanifold and subgroup
of GL(V ).

Furthermore from the theory of ordinary differential equations we know that for
t ∈ R, A,B ∈ gl(V ), M ∈ GL(V ) we have

exp(MAM−1) =M exp(A)M−1 (1.4)

exp(A +B) = exp(A) exp(B) = exp(B) exp(A), if [A,B] = 0 (1.5)
d
dt (exp(tA)) = exp(tA)A = A exp(tA) (1.6)

We would like to have similar properties in adapted form for arbitrary Lie groups.
We already have an adapted form of the first equality of (1.6) which is the equation

d
dt (exp(tX)) = (dℓexp(tX))(X)

i. e., t↦ exp(tX) is an integral curve of the left-invariant extension of X.

Lemma 1.26. Let G be a Lie group, g = Lie(G), X ∈ g, t ∈ R. Then

Adexp(tX)(X) =X .

Proof: One easily checks Cexp(tX)(exp(tX)) = exp(tX). If we derive this at t = 0
one gets the equation stated in the lemma.
It immediately follows that (dℓexp(tX))(X) = (drexp(tX))(X), and we get the follow-
ing corollary that generalizes (1.6). Fr 26.4.
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Corollary 1.27.

d
dt (exp(tX)) = (dℓexp(tX))(X)) = (drexp(tX))(X)

Lemma 1.28. If f ∶G→H is a homomorphism of Lie groups. Let expG∶g→ G and
expH ∶h→H be the exponential maps of G and H. Then the diagram

G H

g h

f

expG expH

d1f

(1.7)

commutes, i. e., f ○ expG = expH ○d1f .

Proof: Let X ∈ g. Then t ↦ expG(tX) is a 1-parameter subgroup of G. Thus
t↦ f ○ expG(tX) is a 1-parameter subgroup of G. We calculate

d
dt ∣t=0

f ○ expG(tX) = d1f(
d
dt ∣t=0

expG(tX)) = d1f(X) .

Thus this is the 1-parameter subgroup t ↦ expH(td1f(X)), i. e., f ○ expG(tX) =
expH(td1f(X)) for all t ∈ R which implies the statement.

As a corollary we get the Lie group analogon of equation (1.4):

Corollary 1.29. For a Lie G and σ ∈ G we get Cσ ○ exp = exp ○Adσ, i. e., the
diagram

G G

g g

Cσ

exp exp

Adσ

commutes.

Proof: Apply Lemma 1.28 to H = G, f = Cσ and thus d1f = Adσ.
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1.5 Proof of Lemma 1.18

We now provide the proof of Lemma 1.18 which is still missing.

Let us recall the following exercise from last semester:

Exercise 1.30 (Diff. geom. I, Exercise Sheet 6, Exercise 4 with changed notation).
Let M be a smooth, not necessarily compact, manifold. Given a 1-parameter group
of diffeomorphisms φ ∶ M × R → M , (x, t) ↦ φt(x) on M , i. e., φ is smooth with
φ0 = IdM and φt ○ φs = φt+s for all s, t ∈ R. Let ξ be the associated tangent vector
field on M , defined as

ξ|x ∶=
d

dt ∣t=0
(φt(x)) ,

see also Diff. geom. I, Exercise Sheet 5, Exercise 3. Show that, for any smooth
tangent vector field Y on M and point p ∈M it is

d

dt ∣t=0
((φt)∗η) ∣p = −[ξ, η]∣p,

where, for any diffeomorphism ψ ∶M →M , the term ψ∗η denotes the pushforward
tangent vector field of η defined by ψ∗η ∶= dψ ○ η ○ ψ−1.

Proof of Lemma 1.18: 4 Let X,Y ∈ g with left-invariant extensions X and Y .
At first, we calculate for t ∈ R:

Adexp(tX)(Y ) = drexp(−tX) ○ dℓexp(tX)(Y )∣
1

= drexp(−tX)(Y )∣exp(tX)
(∗)= dΦX

−t(Y )∣ΦX
−t(1)

(+)= (ΦX
−t)∗(Y )∣1

where we used at (∗) Proposition (1) (5), and where we used at (+) the pushforward
of vector fields from the preceding exercise. We derive this with respect to t at t = 0,
and use the results of the exercise above at (†) for ξ = −X, η = Y and φt = ΦX

−t.
This gives

adX Y =
d
dt ∣t=0

Adexp(tX)(Y )

= d
dt ∣t=0

(ΦX
−t)∗(Y )∣1

4We roughly follow [7, 3.46].
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(†)= [X,Y ]∣
1

= [X,Y ]

1.6 Commuting elements in Lie groups and Lie algebras

Definition 1.31. Two elements σ, τ ∈ G in a Lie group commute, if στ = τσ.
Two elements X,Y ∈ g in a Lie algebra commute, if [x, y].

We want to relate commutativity in a Lie group to commutativity in its Lie
algebra.

We start by some considerations on arbitrary manifolds M and N .

Lemma 1.32. Let f ∶M → N be a smooth map, and let X ∈ X(M) be f -related to
Y ∈ X(N), i. e., df ○X = Y ○ f . Then the flows ΦX

t and ΦY
t of X and Y satisfy

ΦY
t ○ f = f ○ΦX

t .

Proof: For p ∈M we will show that t↦ γ(t) ∶= f ○ΦX
t (p) ∈ N is an integral curve

of Y . As one easily checks γ(0) = f(p), this proves the statement.

γ̇(t) = d
dt(f ○ΦX

t (p))

= df ○ ( d
dtΦ

X
t (p))

= df ○ (X ∣ΦX
t (p)
)

= (df ○X)∣ΦX
t (p)
)

= (Y ○ f)∣ΦX
t (p)
)

= Y ∣
γ(t)

.

Proposition 1.33. Let X and Y be vector fields on M with flows ΦX● and ΦY● .
Then

[X,Y ] = 0⇐⇒ ∀s, t ∈ R ∶ ΦX
t ○ΦY

s = ΦY
s ○ΦX

t .

Proof:
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“⇐”: We apply d
ds ∣s=0 to

ΦX
t ○ΦY

s = ΦY
s ○ΦX

t

and using d
ds ∣s=0Φ

Y
s = Y we obtain

d(ΦX
t ) ○ Y = Y ○ΦX

t

which means (ΦX
t )∗Y = Y . We apply Exercise 1.30 for ξ = X and thus φt = ΦX

t , so
we obtain by deriving with respect to t at t = 0:

0 = d

dt ∣t=0Y

= d

dt ∣t=0(Φ
X
t )∗Y

= −[X,Y ]

“⇒”: For p ∈M and for s ∈ R we define

vp(t) ∶= ((ΦX
t )∗Y )∣p

= d(ΦX
t ) ○ Y ○ΦX

−t(p) ∈ TpM .

We may differentiate this in the sense of Analysis II, and we write this differential
as v′p(t). Exercise 1.30 tells us that v′p(0) = −[X,Y ] = 0 for all p ∈ M . We set
p = ΦX−s(q) and we get

vΦX
−s(q)(t) = (d(Φ

X
t ) ○ Y ○ΦX

−t−s)∣
q

= (d(ΦX
−s) ○ (d(ΦX

t+s) ○ Y ○ΦX
−t−s))∣

q

= (d(ΦX
−s) ○ (ΦX

t+s)∗Y )∣q
= d(ΦX

−s) (vq(t + s))

Deriving this with respect to t at t = 0 yields

0 = v′ΦX
−s(q)(0) = d(ΦX

−s) (v′q(s))

and as d(ΦX−s) is an isomorphism, this gives v′q(s) = 0 for all s ∈ R and all q ∈ M .
Thus we have vq(t) = vq(0) = Y for all q ∈M and t ∈ R. We have thus proven

d(ΦX
t ) ○ Y = Y ○ΦX

t
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which means that Y is ΦX
t -related to itself. Using Lemma 1.32 for M = N , X

replaced by Y , f = ΦX
t and t replaced by s we get

ΦX
t ○ΦY

s = ΦY
s ○ΦX

t .

Corollary 1.34. Let G be a Lie group, X,Y ∈ g = Lie(G).

(1) If [X,Y ] = 0 then exp(X) exp(Y ) = exp(Y ) exp(X) = exp(X + Y ).

(2) Conversely, if

exp(tX) exp(sY ) = exp(sY ) exp(tX) for all t, s ∈ R ,

then [X,Y ] = 0.

The first part of the Corollary provides a Lie group analogon of equation (1.5).

Proof: We extend X,Y ∈ g to left-invariant vector fields, also denoted by X and
Y .5

At first, let us assume [X,Y ] = 0. As we have exp(X) = ΦX
1 (1), the state-

ment exp(X) exp(Y ) = exp(Y ) exp(X) follows from “⇒” in Proposition 1.33. We
also have [sX, tY ] = st[X,Y ] = 0. Thus, we already know exp(sX) exp(tY ) =
exp(tY ) exp(sX) and this yields

exp((t + s)X) exp((t + s)Y ) = exp(tX) exp(sX) exp(tY ) exp(sY )

= ( exp(tX) exp(tY ))( exp(sX) exp(sY )),

thus t ↦ γ(t) ∶= exp(tX) exp(tY ) is 1-parameter subgroup of G, and γ′(0) =
drexp(0)X + dℓexp(0)Y = X + Y . Thus implies exp(t(X + Y )) = exp(tX) exp(tY )
which gives the remaining statement for t = 1.

The converse statement immediately follows from “⇐” in Proposition 1.33.

We have seen that exp∶g→ G satisfies d0 exp = id. Thus, the local reversal theorem
tells us that there is an open neighborhood U0 of 0 and and open neighborhood V0

5We assume it is clear from the context, when a vector is meant, and when we denote a vector
field.
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of 1 such that exp ∣U0
∶U0 → V0 is a diffeomorphism. Using continuity of multipli-

cation and inversion, we see that there is an open neighborhood U1 of 0 such that
U1 ⊂ U0, such that U1 is starshaped with respect to 0, satisfying X ∈ U1⇐⇒ −X ∈ U1

and X,Y ∈ U1⇒X +Y ∈ U0. We put V1 ∶= exp(U1) and by shrinking U1 and V1 fur-
ther we can achieve additionally µ(V1 ×V1) ⊂ V0 and we already have that inversion
maps V1 to itself.

Let γ∶ [0, b] → G be a continous path. For any t ∈ [0, b] we define Wt as the con-
nected component of {s ∈ [0, b] ∣ γ(t)−1γ(s) ∈ V1} that contains t. Then (Wt)t∈[0,b]
is an open cover6 of [0, b]. An elemantary compactness argument for [0, b], treated
under the name Lebesgue number ε, says: there is an ε > 0 if we have a partition

0 = t0 ≤ t1 ≤ ⋯ ≤ tk = b, ∀i ∈ {1,2, . . . , k} ∶ ti − ti−1 < ε (1.8)

then
∀i ∈ {1,2, . . . , k} ∶ ti ∈Wti−1

and thus

∀i ∈ {1,2, . . . , k} ∶ ∀s ∈ [ti−1, ti] ∶ γ(s)−1γ(ti−1) ∈ V1 and γ(ti−1)−1γ(s) ∈ V1 . (1.9)

Corollary 1.35. Let G be a connected Lie group with g = Lie(G). Then the fol-
lowing are quivalent:

(i) G is abelian, i. e., στ = τσ for all σ, τ ∈ G,

(ii) g is abelian, i. e., [X,Y ] = 0 for all X,Y ∈ g,

(iii) exp∶ (g,+)→ (G,µ) is a group homomorphism.

Proof:

“(i)⇒(ii)”: This follows immediately from the second part of Corollary 1.34.

“(ii)⇒(iii)”: This follows immediately from the first part of Corollary 1.34.

“(iii)⇒(i)”: For σ ∈ G we choose a continuous path γ∶ [0, b] → G from 1 to σ.
We choose a subdivision as (1.8)/(1.9). Then σi ∶= γ(ti)−1γ(ti−1) ∈ V1 satisfies
σ = σ1σ2⋯σk. We write σi = exp(Xi), Xi ∈ U1. Similarly we decompose τ = τ1τ2⋯τℓ,
τj = exp(Yj), Yj ∈ U1. Condition (iii) implies that σiτj = τjσi for all i, j and thus

6in German: “Überdeckung”, nicht “Überlagerung”, the two terms have different meanings, but
are denoted with the same words “cover” and “covering” in English, but they are properly
distinguished in German
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στ = τσ.

1.7 The Baker–Campbell–Hausdorff Formula

We have seen that exp∶g → G satisfies d0 exp = id, and in the discussion following
Corollary 1.34 we have discussed the diffeomorphism exp ∣U0

∶U0 → V0, and also had
the smaller open neighborhoods U1 ⊂ U0 of 0 and V1 ⊂ V0 of 1. In particular
multiplication restricts to a map V1 × V1 → V0 and inversion maps V1 to itself.
We write log∶U0 → V0. In this language, it follows from Corollary 1.34 (1) for all
X,Y ∈ U1:

if [X,Y ] = 0, then log(exp(X) exp(Y )) =X + Y .

On the other hand it is clear from (the proof of) Corollary 1.34 (2) that this formula
no longer holds, if g is not abelian. The Baker–Campbell–Hausdorff formula, says
that this can be repaired by adding commutator terms.

Exercise 1.36. We define the 3-dimensional Heisenberg group H3 as

H3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

1 x z

0 1 y

0 0 1

⎞
⎟⎟⎟
⎠
∣ x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

This is a submanifold and subgroup of GL(3,R), thus a Lie group.

(a) Show that its Lie algebra h3, the 3-dimensional Heisenberg Lie algebra
is given by matrices as follows:

h3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

0 x z

0 0 y

0 0 0

⎞
⎟⎟⎟
⎠
∣ x, y, z ∈ R

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(b) Calculate exp∶h3 →H3, and show that it is a diffeomorphism.

(c) Show that log(exp(A) exp(B)) = A +B + 1
2[A,B].

(d) Show that [X, [Y,Z]] = 0 for alle X,Y,Z ∈ h3.
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