
Seminar on Riemannian Gromov-Hausdorff con-
vergence and weighted differential operators

Summer term 2024

Prof. Bernd Ammann
Tuesday 16–18, M103

Number of sessions: 12

Available Dates: 16.4., 23.4. (Bernd in Freiburg), 30.4., 7.5., 28.5., 4.6., 11.6.,
18.6., 25.6., 2.7., 9.7., 16.7.

Special obstruction:

• April 23: Bernd is in Freiburg

• May 14: Conference in Greifswald

• May 21: Whitsuntide break

Talk no. 1: Almost flat manifolds. 16.4. Jonathan Glöckle.
The goal of this talk is the following theorem due to Gromov [24], strengthened
a bit by Ruh [45]. We say that a Riemannian metric is ϵ-flat on a closed manifold
M , if (sup |Kg|) diam(M, g)2 ≤ ϵ. A manifold carries an ϵ-flat for any ϵ > 0 if and
only if it has a sequence of Riemannian metric gi, such that (M, gi) converges
to a point in the Gromov-Hausdorff sense.
It is easy to see that any nilmanifold carries an ϵ-flat meric for any ϵ. Gromov’s
theorem [24] states a converse to this: he shows that there is a constant ϵn > 0,
n = dimM such that any ϵn-flat closed Riemannian manifold of dimension n
is finitely covered by a nilmanifold. [Note in the HIOB seminar it is discussed
that if M is of that type then π1(M) (or of balls in M̃) grows polynomially].
The task of the talk is to present or sketch a proof of this result. It might be good
to mainly follow [7]. The latter reference is essentially longer, but one advantage
of this reference is according to the authors as follows “. . . M. Gromov’s original
publication assumes that the reader is very familiar with several rather different
fields and has no difficulties in completing rather unconventional arguments. . . ”.
Later strengthened this result, essentially by the same method [45].

Supplementary Talk no. 1: Gromov’s proof of a Bieberbach theorem
for flat space 23.4. (Bernd in Freiburg) N.N..
Prove Bieberbach’s theorem following [6]. This talk is tightly related to Talk
no. 1, and it might be good to discuss this topic before one goes into the details
of the proof in Bieberbach’s theorem following [6].

Talk no. 2: Manifolds with polynomial growth in the macroscopic
limit. 30.4. Raphael Schmidpeter.
Let M be a closed manifold with π1(M) virtually nilpotent. For an aribtrary
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Riemannian metric g on M let g̃ be its publlback to the universal covering M̃ .
Discuss that the universal covering (M̃, ϵg, pϵ) for any choice of base point pϵ ∈
M̃ converges for ϵ → 0 in the pointed Gromov-Hausdorff sense to a nilpotent
Lie group together with a Carnot-Carathédory Finsler metric, defined via the
stable norm. The resulting nilpotent Lie group is graded. A similar result holds
for limits of finitely generated almost nilpotent groups with a norm given by
a finite set of generators. Reference: [37]; compare this to [25] and [47] (HIOB
literature)

Supplementary Talk no. 2: Cheeger–Gromov compactness and the
Cheeger finiteness theorem
This talk shall treat the two theorems named above. Main sources are [41], [23].
Additional sources are [40, available?], [42, Chapter 11].
The Cheeger–Gromov compactness states the following: Let (Mi, gi), i ∈ N be
a sequence of closed Riemannian manifolds of dimension n and we assume that
there are constants D,Λ, I0 ∈ R>0 such that we have for all i ∈ N:

diam(Mi, gi) ≤ D, | secg1 | ≤ Λ, injrad(Mi, gi) ≥ I0.

Let α ∈ (0, 1). Then after passing to a subsequence, there is a closed mani-
fold M∞ with a Riemannian metric g∞ of regularity C1,1 such that (Mi, gi)
converges in “some” C1,α-metric to (M∞, g∞). In the literature this theorem is
essentially [23, Theorem/Corollary on page 121] or the equivalent theorem [41,
Theorem 1.7], and one can even conclude C1,α convergence instead of conver-
gence in the Lipschitz topology [23, abstract]. A slightly more general version is
[42, Theorem 11.3.6], called the Fundamental Theorem of Convergence Theory
in Petersen’s book.
The Cheeger finiteness theorem [41, Theorem 1.5], and generalizations are given
in [42, Section 11.1]. The original article for Cheeger finiteness is [8].
This subject will be treated in the HIOB seminar and thus we will
probably skip this in our seminar.

Talk no. 3: Collapsing sequences of Riemannian manifolds with boun-
ded diameter. 7.5. Matthias Ludewig.
Now, let (Mi, gi), i ∈ N be a sequence of closed Riemannian manifolds of dimen-
sion n and we assume that there are constantsD and Λ such that injrad(Mi, gi) ≤
D and | secg1 | ≤ Λ. In contrast to Supplementary Talk no. 2 we assume that a
lower bound I0 on the inhjectivity radius no longer exists. Thus after passing
to a subsequence, diam(Mi, gi) → 0. This situation is called collapse. After pas-
sing to a further subsequence, (Mi, gi) converges in the Gromov-Hausdorff to a
compact metric space (X, d) of lower dimension (e. g., in the Hausdorff sense).
In nice situations (X, d) is a again a Riemannian manifold (of lower dimension)
and there is a map Fi : Mi → X that turns Mi into a fiber bundle over X, whose
fibers are closed manifold that are finitely covered by a nilmanifold. However,
in general, X will have singularities, e. g., orbifold singularities, but there are
essentially more subtle ones.
The list of literature about this subject is long and not easy too read. The
speaker should scroll over the literature and decide what (s)he finds presentable
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to the audience. An article by Naber and Tian [35, (pdf)] is maybe good from
the modern point of view.
In the talk, it is certainly important to present several examples:

• examples where the fibers are collapsing infranilmanifolds

• examples where orbifold singularities develop in the limit

• examples where complicated types of singularity evolve, see e. g., [35]

• see also the examples [35, Examples 1.1 to 1.4, (pdf)]

Then explain to the audience that away from singularities of dimension ≤
min{n − 5,dimX − 3}, we have, as expected, an infranilmanifold bundle over
an orbifold [35, Theorem 1.1]. A similar statement holds for dimX = n−1 [21].
In total, the goal of the talk should be to raise the understanding of some
phenomena and not in going in too much details of the proofs.
Classical literature by Cheeger, Fukaya, Gromov:
[14]; [15], [16]; [18], [20], [19], [21], [22]
More recent literature by Naber and TianCheeger:
[35, (pdf)], [36, (pdf)],

Talk no. 4: Â-genus and collapsing. 28.5. Roman Schießl.
We say that connected closed manifold M admits almost non-negatively curved
metrics if for every ϵ > 0, there is a Riemannian metric g with

secg ·diam(M, g)2 ≥ −ϵ.

In the talk we follow an article by Lott [30], and we discuss whether a spin mani-
fold admitting almost non-negatively curved metrics has vanishing Â-genus, i. e.,
whether it has Â(M) = 0. The article contains several related and interesting
statements and Questions.

Talk no. 5: Collapsing for almost Ricci-flat 4-dimensional manifolds.
4.6. Guadalupe Castillo Solano.
We consider the setting of Talk no. 3 with the additional assumptions n = 4 and
Ricgi ≡ 0. We have seen in Talk no. 3 that then X is a Riemannian orbifold, and
the fibers of Mi → X away from the singular points are infranilmanifolds. We
explain (and proof if time permits) the main results of [34, (pdf)] which gives a
deep unterstanding in this situation.

Talk no. 6: Applications of Gromov-Hausdorff convergence to spec-
tral theory. 11.6. Julian Seipel.

In order to demonstrate the strength of Gromov–Haussdorff methods we will
discuss some applications to spectral theory.
An example is the following result by Vargas
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Theorem 6.1 (A. Vargas [48, Theorem 5.4.1]) Suppose (M, g, χ) is a com-
pact n-dimensional Riemannian spin manifold with | secg | ≤ Λ, diam(M, g) ≤
D, vol(M, g) ≥ V and scalg ≥ n(n− 1).
For every δ > 0 and α ∈ (0, 1) there is an ϵ = ϵ(n,Λ, D, V, α, δ) > 0 such that if
there are “sufficiently”1 many Dirac eigenvalues in[

−n
2 − ϵ, n2 + ϵ

]
then the C1,α distance between (M, g) and the standard sphere is at most δ. In
particular M is diffeomorphic to Sn.

Sketch the proof so that the audience can see how Gromov–Hausdorff me-
thods are used. Vargas’ proof also provides an alternative proof2 of [3, Theo-
rem 1.6/Corollary 1.7]. These investigations were continued by Saskia Roos (née
Voss). Extending Vargas she proved some pinching theorems for Dirac operators
[43, Section 6]; please state and prove some of them.
If time admits also discuss the following codimenion-1-collapsing result by S.
Roos [44, Corollary 6.1] which is proven by simlar methods and which play a
role in Talk no. 9.

Talk no. 7: Gromov–Hausdorff convergence for metric measure spaces.
18.6. N.N..
The goal of this talk is to discuss the extension of Gromov–Hausdorff conver-
gence by including measures. We want to understand, that this concept is more
adequate for studying the Laplace–Beltrami operator, i. e., the natural Laplacian
on functions.
I reccommend to start with the following example (no reference, as one should
be able to do this as an exercise).

Example 7.1 Let (N,h) be a closed Riemannian manifold, and let Fi : N →
R> 0, i ∈ N, be a sequence of smooth functions. Let M = N×S1 ∋ (x, t), where
t ∈ S1 = R/(2πZ). Equip M with the metrics

gi|(x,t) := h|x + Fi(x)
2 dt2.

(1) If ∥Fi∥L∞ → 0, then (M, gi) converges in the Gromov-Hausdorff sense to
(N,h).

(2) Let ϕi := logFi. If there is a constant C > 0, such that ∥∇ϕi∥L∞ < C
and ∥∇2ϕi∥L∞ < C, then the curvature of (M, gi) is uniformly bounded.
(The audience may believe this, or you may cite formulas from Besse’s
book on Einstein manifolds, or Section 2.5 of my partial script “Diffgeo II,
summer term 2021” https: // ammann. app. uni-regensburg. de/ lehre/
2021s_ diffgeo2

(3) Make a Fourier decomposition along S1. Eigenvalues λ for non-zero modes
satisfy λ ≥ ∥Fi∥−2

L∞ .
1See Vargas’ theorem for details
2There is no reference for this alternative proof, it is obvious how to get this modification
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(4) Suppose that ϕi → ϕ∞ in C2(N). Discuss that spec(∆M,gi) does not con-
verge to spec(∆N,h), but to the spectrum of the weighted Laplacian for
(N,h, eϕ∞ dvolh), where one defines as usual ∆ := d∗d, but where the ad-
joint d∗ is taken with respect to the L2-norms associated to the measure
eϕ∞ dvolh.

As a conclusion spec(∆) is not continuous with respect to Gromov–Hausdorff
convergence.

Now introduce Gromov–Hausdorff convergence with measure as in [27, Chap-
ter 3 1

2 , Sections A.3 1
2 .1–B.3 1

2 .3]. You may discuss some examples at the end of
these pages, and add some facts that you like in the following sections. (Note
that this part is not contained in the original, French version of Gromov’s book
[26].)
Then discuss the main results [17] which shows the continuity of the spectrum
of the Laplace–Beltrami operator with respect to measured Gromov–Hausdorff
convergence. If time permits, explain some ideas of the proof.

Talk no. 8: Analysis on metric measure spaces. 25.6. N.N..
Metric spaces with “nice” measures often arise as measured Gromov–Hausdorff
limits. Amazingly much of analysis can be adapted to such metric measure
spaces. As an example we study work by Cheeger: [9].
Such ideas give rise to a whole research domain which we cannot treat here;
examples are [29], [28], [46] or many articles connected to optimal transport.

Talk no. 9: Spectra of other natural differential operators in Gromov–
Hausdorff limits. 2.7. N.N..
The goal of this talk is to discuss to which extent similar phenomena hold for
other natural geometric differential operators.
We start by reconsidering a generalization of Example 7.1 for the Dirac operator.
This is discussed in [1], see also [2, Kapitel 7]. Amazingly, in contrast to the
Laplace-Beltrami operator there is no effect of the limit measure eϕ∞ dvolh.
Explain in detail how to identify spinors on the base with zero mode spinors on
the circle bundle. This can be generalized to bundles of k-dimensional toruses.
Now assume that M is a warped product, similar to Example 7.1, but with a
k-torus. Formulas for spinors on the k-torus bundle give formulas for spinors
on N in a weighted sense. E.g. for any k ∈ N>0 we get a weighted Schrödinger–
Lichnerowicz formula, a weighted positive mass theorem, etc. Such formula will
play an important role in Talk no. 10.
One then might ask whether the Dirac spectrum may possibly be continuous
with respect to Gromov–Hausdorff convergence. Howver, a counterexample is
already given by Heisenberg nilmanifolds: the curvature term F in [44, Corolla-
ry 6.1] survives in the limit (thus in order to get continuity for Dirac eigenvalues
one should pass to Gromov–Hausdorff convverges with additional data, that in-
cludes the curvature of the collapsing infranilmanifolds – which is not so easy
to formalize).
A more general approach to the behavior of collapsing of natural geometric dif-
ferential operators was followed by J. Lott, which led to some articles about the
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Dirac spectrum [31, (pdf)] and the spectrum of the Hodge Laplacian [33, (pdf)],
[32, (pdf)]. If time permits,also explain about this pproach. Some photocopied
slides of a previous talk by Lott (ask Bernd) might help.

Talk no. 10: Weighted Dirac operators. 9.7. N.N.
The topic of this talks are weighted Dirac operators. These are similarly defined
as the weighted Dirac operators in Talk no. 9, howver with adifferent constant.
Such operators were already mentioned in Perelman’s breakthrough article to-
wards geometrization in dimension 3 [39, Remark 1.3, (pdf)], but its claimed
connection to Perelman’s F-functional — also called λ-entropy — remained
mysterious.
J. Baldauf and T. Ozuch recently published two articles [4, (pdf)] [5, (pdf)] in
which the weighted Dirac operator is systematically studied and it was ama-
zing how far classical results about spinors, scalar curvature and the ADM mass
found theor weighted counterparts. To some extension this is not a coninci-
dence but a consequence of the weighted Dirac operators in Talk no. 9. Let
(M, g, e−f dvolg) be a weighted Riemannian spin manifold, f : M → R>0. We
equip P = M × T k with a warped product metric G := g + e−2f/kgflat, where
gflat is a fixed flat metric on T k.
Consider a classical spinorial relations, e.g. the Schrödinger-Lichnerowicz for-
mula on P . Restriction to T k-invariant spinors and identifying these invariant
spinors with spinors on M as in Talk no. 9 provides a spinorial equation on M .
This is almost the Lichnerowicz formula derived in [4], some constant (depen-
ding on k) are different. Howver, linearly combining the equations for two values
of k ∈ N4, one obtains all equalities [4] — however, a priori, not the ineqquali-
ties. This approach will save many calculations, however it was not yet worked
out so far.
The article [4] shows many relations between weigthed ADM mass and the Ricci
flow. In particular it shows that the weigted ADM mass is better adapted to
study the Ricci flow on asymptotically euclidean manifolds. While the standard
ADM mass remains invariant under Ricci flow, it is shown that the weighted
ADM mass is monotonically decreasing under Ricci flow and it measures the evo-
lution towards flat space. In fact it coincides (up to sign) with the ALE-entropy
from Deruelle and Ozuch. One goal of the talk is to explain these relations from
[4].
Be aware that the claimed “Ricci identity” is incorrect (the right hand side is
tensorial, while the left hand side is not) – this gap, however was taken over
from previous literature in spin geometry.
The other part of the talk shall summarize [5, (pdf)]. In equation (0,3) a func-
tional

Eg(ψ, f) =
∫
M

(
4|∇ψ|2 + scalf ·(|ψ|2 − 1)

)
e−f dvolg

is defined, depeding on a Riemannian metric g, a weight function f and a spi-
nor ψ. By taking a minimum over ψ and a maximum over f one obtains a
functional on the space of Riemannian metrics, denote κ(g). Explain that Ricci
flow is the L2(e−f dvolg)-gradient flow of κ, see [5, Theorem 0.8].
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Talk no. 11: Sequences of Riemannian manifolds with Ricci curvature
bounded from below. 16.7. N.N..

Many phenomena we have encountered in this seminar still hold under wea-
ker curvature conditions. Strong results exists if one replaces | sec | ≤ C by
sec ≥ −C, | ric | ≤ C or ric ≥ −C. This talk summarizes the situation for
the assumption ric ≥ −C, i. e., if the Ricci curvature is bounded from below.
References are [10], [11], [12], [13].

Further topics and literature
Further article on GH convergence [38]

Seminar-Homepage
https://ammann.app.uni-regensburg.de/Gromov-Hausdorff
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