

Exercise Sheet no. 14

1. Exercise (4 points).

Let $\varphi: (M, g) \to (N, h)$ be a smooth map between connected manifolds and $g = \varphi^* h$ is the pullback of the metric h.

- a) If φ is a covering map, then show that (M, g) is complete iff (N, h) is complete.
- b) Assume that φ is a local diffeomorphism and an isometry. Show that if (M, g) is complete, then the map φ is a covering map.

2. Exercise (4 points).

Let $(M^{n\geq 2}, g)$ be connected, complete Riemannian manifold with constant sectional curvature. Assume moreover that M is simply-connected. Show

$$(M,g) \text{ is isometric to } \begin{cases} \mathbb{H}^n & \text{if } K = -1, \\ \mathbb{R}^n & \text{if } K = 0, \\ \mathbb{S}^n & \text{if } K = 1. \end{cases}$$

3. Exercise (4 points).

Let $\varphi: (M, g) \to (N, h)$ be a surjective submersion between connected complete Riemannian manifolds. We call φ a *Riemannian submersion* if the map $d_p \varphi$ induces an isomorphism $H_p M \coloneqq (\ker(d_p \varphi))^{\perp} \to T_{\varphi(p)} N$ for each $p \in M$. We call $HM \coloneqq \bigcup_{p \in M} H_p M \subset TM$ the horizontal subbundle and its elements *horizontal*.

- a) Let $\gamma: I \to N$ be a smooth curve, I some interval. Show that there exists a horizontal lift $\tilde{\gamma}: I \to M$, i.e. a curve $\tilde{\gamma}$ satisfying $\dot{\tilde{\gamma}}(t) \in H_{\tilde{\gamma}(t)}M$ and $\varphi \circ \tilde{\gamma} = \gamma$. Also show for any curve $\tau: [a, b] \to N$ that $\mathcal{L}(\varphi \circ \tau) \leq \mathcal{L}(\tau)$.
- b) Show: if γ is a geodesic, then its horizontal lift $\tilde{\gamma}$ is also a geodesic. *Hint: use the fact that* γ *locally minimizes length to show that* $\tilde{\gamma}$ *also minimizes length locally.*
- c) Show: if a horizontal curve $\tau: I \to M$ is geodesic, then $\varphi \circ \tau: I \to N$ is also a geodesic.
- d) Let γ be a geodesic in M. Show that if $\dot{\gamma}(0)$ lies in $H_{\gamma(t)}M$ then we have $\dot{\gamma}(t) \in HM$ for all $t \in I$.

4. Exercise (4 points).

Let (M^n, g) be a Riemannian manifold. We assume that (M, g) is *locally symmetric*, i.e. $\nabla R = 0$ holds. In this exercise we want to show that this condition is equivalent to the existence of a local isometry $\sigma_p : U \to \sigma(U)$ with $\sigma(p) = p$ and $d_p \sigma = -\operatorname{id}_{T_pM}$, defined on open neighbourhood $U \subset M$ of p. a) Let $\epsilon > 0$ small enough such that the exponential function is a diffeomorphism onto its image, i.e. $\exp_p: B_{\epsilon}(0) \xrightarrow{\sim} \exp_p(B_{\epsilon}(0)) = B_{\epsilon}(p)$. We define the map

$$\sigma_p: B_{\epsilon}(p) \to B_{\epsilon}(p)$$
$$\gamma(t) \mapsto \gamma(-t),$$

where we use that each point in $B_{\epsilon}(p)$ can be represented by a geodesic emanating from p. Show that $\sigma_p = \exp_p \circ (-\operatorname{id}_{T_pM}) \circ \exp_p^{-1}$ holds.

b) Let $v \in B_{\epsilon}(0)$ and $q = \exp_p(v)$. Moreover let $\gamma(t) = \exp_p(tv)$ and $\bar{\gamma}(t) = \gamma(-t)$ be curves in M. We consider the map

$$F_t: T_{\gamma(t)}M \to T_{\bar{\gamma}(t)}M$$
$$w \mapsto \mathcal{P}_{0,t}^{\bar{\gamma}} \circ (-\operatorname{id}_{T_pM}) \circ \mathcal{P}_{t,0}^{\gamma}(w),$$

where $\mathcal{P}_{a,b}^c: T_{c(a)}M \to T_{c(b)}M$ denotes the parallel transport along the curve $c: I \to M$ with $a, b \in I$. Show that for each Jacobi field J(t) along γ , the field $\bar{J}(t) = F_t(J(t))$ is a Jacobi field along $\bar{\gamma}$. Conclude from the previous statement that the map $\sigma_p: B_{\epsilon}(p) \to B_{\epsilon}(p)$ is an isometry.

c) Let $\gamma: (-\epsilon, \epsilon) \to M$ be a geodesic with $\gamma(0) = p$ and $\dot{\gamma}(0) = v$. Moreover assume that (M, g) is not nessecarily locally symmetric and all the maps σ_p from part a) are isometries. Show for a parallel frame $(e_1(t), \ldots, e_n(t))$ along γ we have

$$g_{\gamma(t)}(R(e_i(t), e_j(t)e_k(t)), e_l(t)) = g_{\gamma(-t)}(R(e_i(-t), e_j(-t)e_k(-t)), e_l(-t))$$

and conclude that (M, g) is locally symmetric.