

Exercise Sheet no. 13

1. Exercise (4 points).

Let M be a compact surface (without boundary) in \mathbb{R}^3 . Let $\overline{B}_r(0)$ be the closed ball of radius r around 0 in \mathbb{R}^3 , and let $S_r(0) = \partial \overline{B}_r(0)$ be its boundary.

- a) Show that the infimum $R := \inf\{r > 0 \mid M \subset \overline{B}_r(0)\} > 0$ is attained, and conclude that $M \cap S_R(0)$ is not empty.
- b) Show that T_pM is the orthogonal complement of p for any $p \in M \cap S_R(0)$. Show for any such $p \in M$ that the symmetric bilinear form

$$T_pM \times T_pM \to \mathbb{R}, \quad (X,Y) \mapsto \left\langle \frac{1}{R}p, \vec{\mathbb{I}}(X,Y) \right\rangle$$

is negative definit.

c) Are there compact minimal surfaces M in \mathbb{R}^3 ? Justify your answer.

2. Exercise (4 points).

Let (M, g) be a connected, non-compact, geodesically complete Riemannian manifold and $p \in M$ be a point. You may use the facts that under these conditions (M, d) is a complete metric space and that for any $p, q \in M$ there is a shortest curve from p to q.

- a) Show the existence of a sequence points $\{p_i\}_{i\in\mathbb{N}}$ in M with $d(p, p_i) \to \infty$ for $i \to \infty$.
- b) Conclude the existence of a geodesic ray¹ $\gamma: [0, \infty) \to M$ with $\gamma(0) = p$. *Hint: Consider a length minimizing geodesic* $\gamma_i: [0, l_i] \to M$ with $\gamma_i(0) = p$ and $\gamma_i(l_i) = p_i$. Use the fact that $\|\dot{\gamma}_i(0)\| = 1$ to conclude that there exists convergent subsequence $\dot{\gamma}_{i_j}(0) \to X \in T_p M$. Consider then $\gamma(t) = \exp_p(tX)$ and show $d(p, \gamma(t)) = t$.

3. Exercise (4 points).

Let (M, g) be a connected, geodesically complete Riemannian manifold and $N \subset M$ be a closed submanifold.² We fix a point $q \in M \setminus N$. We denote by $d(x, N) \coloneqq \inf \{ d(x, y) \mid y \in N \}$ the minimal distance from x to the submanifold N.

- a) Show that there exists a point $p \in N$ with d(q, p) = d(q, N). Do we need the assumption that N is closed?
- b) Show the existence of a geodesic γ , which connects p and q with length given by $\mathcal{L}(\gamma) = d(q, p)$.
- c) Conclude with the first variation of the energy that the curve γ hits N in an orthogonal way.

¹A geodesic ray $\gamma: [0, \infty) \to M$ is a geodesic such that for all compact subsets $K \subset M$ there exists a time T > 0 such that $\gamma(T) \notin K$ holds.

²You may use the facts that under these conditions (M, d) is a complete metric space and that for any $p, q \in M$ there is a shortest curve from p to q.

4. Exercise (4 points).

Let M be a smooth manifold and G be a group equipped with the discrete topology. Moreover we have a continuous group action

$$R: M \times G \to M$$
$$(p,g) \mapsto R(p,g),$$

i.e. R satisfies R(p,gh) = R(R(p,g),h) for all $p \in M$ and $g,h \in G$. We denote by $p \cdot G \coloneqq \{R(p,g) \mid g \in G\}$ the orbit of p along the group action and we denote by $M/G \coloneqq \{p \cdot G \mid p \in M\}$ the quotient space of the group action. The canonical projection $\pi: M \to M/G, p \mapsto \pi(p) = p \cdot G$ induces a topology on the quotient M/G, i.e. a subset $U \subset M/G$ is open iff $\pi^{-1}(U) \subset M$ is open.

a) Show that the right multiplication maps $R_g: M \to M, p \mapsto R(p, g)$ is a homeomorphism for any $g \in G$. Are these maps also diffeomorphisms?

Now we assume that the group action R is free and properly discontinuous. Here we refer to an action R as free if for any $g \in G \setminus \{e\}$ the right multiplication maps R_g has no fixed point. An action R is properly discontinuous if for all points $p, q \in M$ there exist open neighbourhoods U_p, V_q of p respectively q such that $R_g(U_p) \cap V_q = \emptyset$ holds for all $g \in G$ with the condition $R(p, g) \neq q$.

- b) Show that the quotient space M/G is Hausdorff.
- c) Show that the canonical projection $\pi: M \to M/G$ is a covering map, i.e. for all points $P \in M/G$ there exists an open neighbourhood U of P and a homeomorphism $\Phi_U: \pi^{-1}(U) \to U \times G$ such that $\Phi \circ \operatorname{pr}_1 = \pi$ holds.
- d) (Bonus part) Assume additionally that R_g is smooth for any $g \in G$. Show then that the quotient space M/G is a smooth manifold and the canonical projection is a local diffeomorphism.