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1. Exercise (4 points).
Let M be a compact surface (without boundary) in R3. Let Br(0) be the closed ball of
radius r around 0 in R3, and let Sr(0) = ∂Br(0) be its boundary.

a) Show that the infimum R ∶= inf{r > 0 ∣M ⊂ Br(0)} > 0 is attained, and conclude that
M ∩ SR(0) is not empty.

b) Show that TpM is the orthogonal complement of p for any p ∈ M ∩ SR(0). Show for
any such p ∈M that the symmetric bilinear form

TpM × TpM → R, (X,Y ) ↦ ⟨ 1
Rp, I⃗I(X,Y )⟩

is negative definit.

c) Are there compact minimal surfaces M in R3? Justify your answer.

2. Exercise (4 points).
Let (M,g) be a connected, non-compact, geodesically complete Riemannian manifold and
p ∈M be a point. You may use the facts that under these conditions (M,d) is a complete
metric space and that for any p, q ∈M there is a shortest curve from p to q.

a) Show the existence of a sequence points {pi}i∈N in M with d(p, pi) → ∞ for i→∞.

b) Conclude the existence of a geodesic ray1 γ∶ [0,∞) →M with γ(0) = p.
Hint: Consider a length minimizing geodesic γi∶ [0, li] →M with γi(0) = p and γi(li) =
pi. Use the fact that ∥γ̇i(0)∥ = 1 to conclude that there exists convergent subsequence
γ̇ij(0) →X ∈ TpM . Consider then γ(t) = expp(tX) and show d(p, γ(t)) = t.

3. Exercise (4 points).
Let (M,g) be a connected, geodesically complete Riemannian manifold and N ⊂M be a
closed submanifold.2 We fix a point q ∈M∖N . We denote by d(x,N) ∶= inf{d(x, y) ∣ y ∈ N}
the minimal distance from x to the submanifold N .

a) Show that there exists a point p ∈ N with d(q, p) = d(q,N). Do we need the assumption
that N is closed?

b) Show the existence of a geodesic γ, which connects p and q with length given by
L(γ) = d(q, p).

c) Conclude with the first variation of the energy that the curve γ hits N in an orthogonal
way.

1A geodesic ray γ∶ [0,∞) → M is a geodesic such that for all compact subsets K ⊂ M there exists a
time T > 0 such that γ(T ) /∈K holds.

2You may use the facts that under these conditions (M,d) is a complete metric space and that for
any p, q ∈M there is a shortest curve from p to q.



4. Exercise (4 points).
Let M be a smooth manifold and G be a group equipped with the discrete topology.
Moreover we have a continuous group action

R∶M ×G→M

(p, g) ↦ R(p, g),

i.e. R satisfies R(p, gh) = R(R(p, g), h) for all p ∈ M and g, h ∈ G. We denote by p ⋅G ∶=
{R(p, g) ∣ g ∈ G} the orbit of p along the group action and we denote by M/G ∶= {p ⋅G ∣ p ∈
M} the quotient space of the group action. The canonical projection π∶M → M/G,p ↦
π(p) = p ⋅G induces a topology on the quotient M/G, i.e. a subset U ⊂ M/G is open iff
π−1(U) ⊂M is open.

a) Show that the right multiplication maps Rg ∶M →M,p↦ R(p, g) is a homeomorphism
for any g ∈ G. Are these maps also diffeomorphisms?

Now we assume that the group action R is free and properly discontinuous. Here we refer
to an action R as free if for any g ∈ G∖{e} the right multiplication maps Rg has no fixed
point. An action R is properly discontinuous if for all points p, q ∈ M there exist open
neighbourhoods Up, Vq of p respectively q such that Rg(Up) ∩ Vq = ∅ holds for all g ∈ G
with the condition R(p, g) /= q.

b) Show that the quotient space M/G is Hausdorff.

c) Show that the canonical projection π∶M → M/G is a covering map, i.e. for all
points P ∈M/G there exists an open neighbourhood U of P and a homeomorphism
ΦU ∶π−1(U) → U ×G such that Φ ○ pr1 = π holds.

d) (Bonus part) Assume additionally that Rg is smooth for any g ∈ G. Show then that
the quotient space M/G is a smooth manifold and the canonical projection is a local
diffeomorphism.


