Differential Geometry I: Exercises

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, January 23

Exercise Sheet no. 12

1. Exercise (4 points).

Let $\left(M^{2}, g\right)$ be a two-dimensional Riemannian submanifold of \mathbb{R}^{3}. We call M a minimal surface if the mean curvature of M in \mathbb{R}^{3} vanishes.
a) Show that a minimal surface has non-positive sectional curvature, and if the sectional curvature is 0 in $p \in M$, then the fundamental form vanishes in p.
b) Consider the catenoid

$$
\begin{aligned}
\Phi_{1}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3} \\
(x, y) & \mapsto\left(\begin{array}{c}
\alpha \cosh (x) \cos (y) \\
\alpha \cosh (x) \sin (y) \\
\sinh (x)
\end{array}\right)
\end{aligned}
$$

and the helicoid

$$
\begin{aligned}
\Phi_{2}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3} \\
(x, y) & \mapsto\left(\begin{array}{c}
x \cos (y) \\
x \sin (y) \\
\beta y
\end{array}\right)
\end{aligned}
$$

with constants $\alpha, \beta \in \mathbb{R}$. Compute the induced metrics g_{1}, g_{2} on \mathbb{R}^{2} and the Weingarten maps. Show that the catenoid and the helicoid are minimal surfaces in \mathbb{R}^{3}.
c) Compute the sectional curvatures of both surfaces. Does there exists an isometry $\phi:\left(\mathbb{R}^{2}, g_{1}\right) \rightarrow\left(\mathbb{R}^{2}, g_{2}\right) ?$
d) Show that there does not exists an isometry $\bar{\phi}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\bar{\phi}\left(\right.$ image $\left.\left(\Phi_{1}\right)\right)=$ image $\left(\Phi_{2}\right)$ holds.
2. Exercise (4 points).

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with non-positive sectional curvature, i.e. $K \leq 0$. We denote by J a Jacobi field along a geodesic c of (M, g).
a) Show that $g\left(J, \frac{\nabla^{2}}{d t^{2}} J\right)$ is a non-negative function.
b) Show that $\frac{d^{2}}{d t^{2}}(g(J, J))$ is a non-negative function.
c) Conclude from the previous statements that the Jacobi field vanishes identically or has at most one point where it vanishes.
3. Exercise (4 points).

Let (M, g) be a semi-Riemannian manifold and J be a Jacobi field along a geodesic $c: I=[a, b] \rightarrow M$. Show that there exists a geodesic variation $c_{\bullet}:(-\epsilon, \epsilon) \times I \rightarrow M$ of c such that $J=\left.\frac{d}{d s}\right|_{s=0} c_{s}$ holds.
Hint: For some $t_{0} \in[a, b]$ choose a curve $\gamma:(-\epsilon, \epsilon) \rightarrow M$ with $\gamma(0)=c\left(t_{0}\right)$ and $\dot{\gamma}(0)=$ $J\left(t_{0}\right)$. Find a vector field X along γ such that $(s, t) \mapsto c_{s}(t)=\exp _{\gamma(s)}(t X(s))$ is a suitable geodesic variation.
4. Exercise (4 points).

Let (M, g) be a semi-Riemannian manifold.
a) Recall that we denote the parallel transport along a curve γ by \mathcal{P}_{γ}. Let $F: \mathbb{R}^{2} \rightarrow M$ be a smooth map and denote by γ_{t} the curve in M which is given by

$$
\gamma_{t}(s)= \begin{cases}F(4 s t, 0) & s \in\left[0, \frac{1}{4}\right] \\ F(t, t(4 s-1)) & s \in\left[\frac{1}{4}, \frac{1}{2}\right] \\ F(t(3-4 s), t) & s \in\left[\frac{1}{2}, \frac{3}{4}\right] \\ F(0, t(4-4 s)) & s \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

i.e. the piecewise smooth curve which gives the image of the closed polygonal chain with corner points $(0,0),(t, 0),(t, t)$ and $(0, t)$. Show that

$$
\lim _{t \rightarrow 0} \frac{\mathcal{P}_{\gamma_{t}} v-v}{t^{2}}=R\left(\frac{\partial F}{\partial x_{2}}(0), \frac{\partial F}{\partial x_{2}}(0)\right) v
$$

holds for all $v \in T_{F(0,0)} M$.
Hint: Use the following statement from the lecture (Lemma V.4.2): Let $\alpha: \mathbb{R}^{2} \rightarrow M$ be a smooth map and X a vector field along α such that $\frac{\nabla}{\partial x} X=\frac{\nabla}{\partial y} X$ holds, then we have

$$
\frac{\nabla}{\partial x} \frac{\nabla}{\partial x} X-\frac{\nabla}{\partial y} \frac{\nabla}{\partial y} X=R\left(\frac{\partial \alpha}{\partial x}, \frac{\partial \alpha}{\partial y}\right) X
$$

b) If (M, g) is flat, then for every point $p \in M$ and vector $v \in T_{p} M$, there exists an open neighbourhood of p given by $U \subset M$ and a section $X: U \rightarrow T M$ of the tangent bundle $T M$, which is parallel, i.e. $\nabla X=0$ on U, and satisfies $X_{p}=v$. Construct a counterexample in the non-flat case for the previous statement.

