

Exercise Sheet no. 11

1. Exercise (4 points).

Let (M, g) be a semi-Riemannian manifold and $N \subset M$ be an open subset. Assume that N is geodesically complete¹ and M is connected. Show that N = M holds. *Hint: Consider a point in the boundary* $\overline{N} \setminus N$.

2. Exercise (4 points).

Let $N \subset M$ be a semi-Riemannian submanifold of the semi-Riemannian manifold (M, g). We say that N is *totally geodesic* if the second fundamental form $\vec{\mathbf{I}} \equiv 0$ vanishes.

- a) Show that N is totally geodesic iff every geodesic of N is also a geodesic of M.
- b) Assume now that N is geodesically complete. Show that N is totally geodesic iff every geodesic $\gamma: I \to M$, of M with $\dot{\gamma}(0) \in TN$ is contained in N.
- c) Do we need the assumption of geodesic completeness in part b) to conclude the statement?

3. Exercise (4 points).

Let $(\overline{M}, \overline{g})$ be a semi-Riemannian manifold and M be submanifold of dimension $n = \dim(M) = \dim(\overline{M}) - 1$. Assume that there exists a map into the normal bundle $\nu: M \to \mathcal{N}M$, such that $g(\nu, \nu) = \epsilon \in \{-1, +1\}$ holds. Denote by g the induced Riemannian metric on M.

a) Show that there exists a unique bundle map $W \in \Gamma(\text{End}(TM))$ with the property

$$g(W(X),Y) = \bar{g}(\bar{\mathbb{I}}(X,Y),\nu)$$

for all $X, Y \in T_pM$ and $p \in M$. In particular, the endomorphism $W|_p: T_pM \to T_pM$ is self-adjoint. We call W the Weingarten map of the embedding $(M, g) \to (\overline{M}, \overline{g})$.

- b) Show that $W(X) = -\overline{\nabla}_X \nu$ holds for all $X \in TM$.
- c) Assume that \overline{M} is Riemannian and $n = \dim(M) \ge 3$. Moreover the metric on \overline{M} is assumed to be flat, i.e. $\overline{R} \equiv 0$. Show that for any point $p \in M$ there is a plane $E \subset T_pM$ with $K(E) \ge 0$. Hint: Consider planes $E = \operatorname{span}(\xi_i, \xi_j)$ which are spanned by an orthonormal basis ξ_1, \ldots, ξ_n of eigenvectors of W and use the Gauß formula.

¹A semi-Riemannian manifold N is *geodesically complete* if the exponential map is defined on the full tangent bundle TN

4. Exercise (4 points).

Let $(\overline{M}, \overline{g})$ be a flat semi-Riemannian manifold and M be a semi-Riemannian submanifold of \overline{M} with dimension m and induced metric g. Let (b_1, \ldots, b_m) be a generalized orthonormal basis of T_pM with the condition $g(b_i, b_j) = \delta_{ij} \varepsilon_i$, $\varepsilon_i \in \{-1, 1\}$. We define the mean curvature vector field by $\vec{H}_p \coloneqq \sum_{i=1}^m \varepsilon_i \vec{\Pi}(b_i, b_i)$.

- a) Show that \vec{H}_p is well-defined.
- b) Show that

$$\operatorname{Ric}(X,Y) = \bar{g}(\vec{H}_p, \vec{\mathbb{I}}(X,Y)) - \sum_{i=1}^m \varepsilon_i \, \bar{g}(\vec{\mathbb{I}}(b_i,X), \vec{\mathbb{I}}(b_i,Y)).$$

holds for all $X, Y \in T_pM$

c) Let M be of dimension m-1 and assume that there exists a map into the normal bundle $\nu: M \to \mathcal{N}M$, such that $g(\nu, \nu) = \epsilon \in \{\pm 1\}$ holds with associated Weingarten map W (defined in Exercise 3). Show that:

$$\bar{g}(\nu,\nu)$$
 · scal = $(\operatorname{Tr} W)^2 - \operatorname{Tr}(W^2)$.