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1. Exercise (4 points).
Let (M,g) be a semi-Riemannian manifold and N ⊂M be an open subset. Assume that
N is geodesically complete1 and M is connected. Show that N =M holds. Hint: Consider
a point in the boundary N̄ ∖N .

2. Exercise (4 points).
Let N ⊂M be a semi-Riemannian submanifold of the semi-Riemannian manifold (M,g).
We say that N is totally geodesic if the second fundamental form I⃗I ≡ 0 vanishes.

a) Show that N is totally geodesic iff every geodesic of N is also a geodesic of M .

b) Assume now that N is geodesically complete. Show that N is totally geodesic iff every
geodesic γ∶ I →M , of M with γ̇(0) ∈ TN is contained in N .

c) Do we need the assumption of geodesic completeness in part b) to conclude the state-
ment?

3. Exercise (4 points).
Let (M̄, ḡ) be a semi-Riemannian manifold and M be submanifold of dimension n =
dim(M) = dim(M̄) − 1. Assume that there exists a map into the normal bundle ν∶M →
NM , such that g(ν, ν) = ε ∈ {−1,+1} holds. Denote by g the induced Riemannian metric
on M .

a) Show that there exists a unique bundle map W ∈ Γ(End(TM)) with the property

g(W (X), Y ) = ḡ(I⃗I(X,Y ), ν)

for all X,Y ∈ TpM and p ∈M . In particular, the endomorphism W ∣p∶TpM → TpM is

self-adjoint. We call W the Weingarten map of the embedding (M,g) ↪ (M̄, ḡ).

b) Show that W (X) = −∇̄Xν holds for all X ∈ TM .

c) Assume that M̄ is Riemannian and n = dim(M) ≥ 3. Moreover the metric on M̄
is assumed to be flat, i.e. R̄ ≡ 0. Show that for any point p ∈ M there is a plane
E ⊂ TpM with K(E) ≥ 0. Hint: Consider planes E = span(ξi, ξj) which are spanned
by an orthonormal basis ξ1, . . . , ξn of eigenvectors of W and use the Gauß formula.

1A semi-Riemannian manifold N is geodesically complete if the exponential map is defined on the full
tangent bundle TN



4. Exercise (4 points).
Let (M̄, ḡ) be a flat semi-Riemannian manifold and M be a semi-Riemannian subma-
nifold of M̄ with dimension m and induced metric g. Let (b1, . . . , bm) be a generalized
orthonormal basis of TpM with the condition g(bi, bj) = δij εi, εi ∈ {−1,1}. We define the
mean curvature vector field by H⃗p ∶= ∑m

i=1 εi I⃗I(bi, bi).

a) Show that H⃗p is well-defined.

b) Show that

Ric(X,Y ) = ḡ(H⃗p, I⃗I(X,Y )) −
m

∑
i=1

εi ḡ(I⃗I(bi,X), I⃗I(bi, Y )).

holds for all X,Y ∈ TpM

c) Let M be of dimension m − 1 and assume that there exists a map into the normal
bundle ν∶M → NM , such that g(ν, ν) = ε ∈ {±1} holds with associated Weingarten
map W (defined in Exercise 3). Show that:

ḡ(ν, ν) ⋅ scal = (TrW )2 −Tr(W 2).


