Differential Geometry I: Exercises

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl Please hand in the exercises until Tuesday, January 9

1. Exercise: Polar normal coordinates (4 points).

Let $\left(M^{2}, g\right)$ be a 2-dimensional Riemannian manifold. Let $p \in M$ be a point and choose an $\epsilon>0$ such that the exponential map $\exp _{p}: B_{\epsilon}(0) \rightarrow \exp _{p}\left(B_{\epsilon}(0)\right)$ is a diffeomorphism. Denote by $x=\left(x^{1}, x^{2}\right)$ the normal coordinates at p and consider the induced Polar normal coordinates (r, φ) via the identification $T_{p} M \cong \mathbb{R}^{2}$ with euclidean space.
a) Show that we have the following identification of the induced coordinate vector fields:

$$
\begin{aligned}
& \frac{\partial}{\partial r}=\cos (\varphi) \frac{\partial}{\partial x^{1}}+\sin (\varphi) \frac{\partial}{\partial x^{2}} \\
& \frac{\partial}{\partial \varphi}=-r \sin (\varphi) \frac{\partial}{\partial x^{1}}+r \cos (\varphi) \frac{\partial}{\partial x^{2}}
\end{aligned}
$$

b) Determine the coefficients of the metric in Polar normal coordinates $g_{r r}, g_{r \varphi}, g_{\varphi \varphi}$ in terms of the metric $g_{i j}$ with respect to normal coordinates.
c) Let $\left(E_{1}, E_{2}\right)$ be an orthonormal basis of $\left(T_{p} M, g_{p}\right)$. Consider the closed curve $\gamma_{r}(t)=$ $\exp _{p}\left(r \cos (t) E_{1}+r \sin (t) E_{2}\right)$ on M for $t \in[0,2 \pi]$ and a radius $r<\epsilon$. Show that the sectional curvature K_{p} of (M, g) at p can be computed as follows

$$
K_{p}=\frac{3}{\pi} \lim _{r \rightarrow 0} \frac{2 \pi r-\mathcal{L}\left[\gamma_{r}\right]}{r^{3}},
$$

where $\mathcal{L}\left[\gamma_{r}\right]$ is the length of the curve γ_{r}. Can you give a heuristic explanation of this formula? Hint: Use the Taylor expansion of the metric in normal coordinates and express it then in Polar normal coordinates.
2. Exercise: Bianchi identities (4 points).

Let $\alpha \in \Omega^{1}(M)$ be a 1-form and $\beta \in \Omega^{2}(M)$ be a 2 -form on a Riemannian manifold (M, g). Let $X_{1}, X_{2}, X_{3}, X_{4} \in \mathfrak{X}(M)$ be vector fields on M. Recall the expressions of the Cartan differential:

$$
\begin{aligned}
d \alpha\left(X_{1}, X_{2}\right) & =X_{1}\left(\alpha\left(X_{2}\right)\right)-X_{2}\left(\alpha\left(X_{1}\right)\right)-\alpha\left(\left[X_{1}, X_{2}\right]\right) \\
d \beta\left(X_{1}, X_{2}, X_{3}\right) & =\sum_{\sigma} X_{\sigma(1)}\left(\beta\left(X_{\sigma(2)}, X_{\sigma(3)}\right)\right)-\beta\left(\left[X_{\sigma(1)}, X_{\sigma(2)}\right], X_{\sigma(3)}\right)
\end{aligned}
$$

where the sum in the second formula runs over all cyclic permutations of the set $\{1,2,3\}$.
a) Show:

$$
d \alpha\left(X_{1}, X_{2}\right)=\left(\nabla_{X_{1}} \alpha\right)\left(X_{2}\right)-\left(\nabla_{X_{2}} \alpha\right)\left(X_{1}\right)
$$

b) Use $d d \alpha=0$ to deduce the first Bianchi identity:

$$
R\left(X_{1}, X_{2}\right) X_{3}+R\left(X_{2}, X_{3}\right) X_{1}+R\left(X_{3}, X_{1}\right) X_{2}=0
$$

c) Let $X \in \mathfrak{X}(M)$ be a fixed vector field. Define $\tilde{\alpha}\left(X_{1}\right)=\alpha\left(\nabla_{X_{1}} X\right)$ and deduce, by using $d d \tilde{\alpha}=0$, the second Bianchi identity:

$$
\left(\nabla_{X_{1}} R\right)\left(X_{2}, X_{3}\right)+\left(\nabla_{X_{2}} R\right)\left(X_{3}, X_{1}\right)+\left(\nabla_{X_{3}} R\right)\left(X_{1}, X_{2}\right)=0
$$

3. Exercise (4 points).

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Denote by R the Riemannian curvature tensor as a (1,3)-tensor. Let $X, Y, Z, U, W \in \mathfrak{X}(M)$ be vector fields on M, then define

$$
\begin{array}{r}
R^{(0,4)}(X, Y, Z, W)=g(R(X, Y) Z, W) \\
g\left(R^{\Lambda^{2}}(X \wedge Y), Z \wedge W\right)=R(X, Y, Z, W)
\end{array}
$$

the associated (0,4)-tensor and curvature endomorphism.
a) Let $\left\{e_{i}\right\}_{i} \subset T_{p} M$ be an orthonormal basis of g. Show that by

$$
g_{p}\left(e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right)=\delta_{i k} \delta_{j l}
$$

for $i<j$ and $k<l$ we obtain a non-degenerated bilinearform on $T_{p} M$, which depends smoothly on p.
b) Show that $R^{(0,4)}$ is a well-defined (0,4)-tensor on M and $R^{\Lambda^{2}}$ is a well-defined map $\Lambda^{2} T_{p} M \rightarrow \Lambda^{2} T_{p} M$, which depends smoothly on p.
c) Show that we have the following identities:

$$
\begin{aligned}
& \left(\nabla_{X} R^{(0,4)}\right)(Y, Z, U, W)=-\left(\nabla_{X} R^{(0,4)}\right)(Z, Y, U, W) \\
= & \left(\nabla_{X} R^{(0,4)}\right)(U, W, Y, Z)=-\left(\nabla_{X} R^{(0,4)}\right)(Y, Z, W, U)
\end{aligned}
$$

d) Let $T \in \Gamma\left(T^{(0, s)} M\right)$ be a ($0, s$)-tensor for $s \geq 1$. We define the divergence of T by

$$
\operatorname{div}(T)\left(X_{1}, \ldots, X_{s-1}\right):=\sum_{j=1}^{n}\left(\nabla_{e_{j}} T\right)\left(e_{j}, X_{1}, \ldots, X_{s-1}\right)
$$

where $\left\{e_{j}\right\}_{j}$ is an orthonormal basis of $T_{p} M$ and $X_{1}, \ldots, X_{s-1} \in T_{p} M$. Show:

$$
\operatorname{div}(\text { ric })=\frac{1}{2} d \text { scal. }
$$

Hint: Use the second Bianchi identity for the Riemannian curvature tensor.
4. Exercise: Schur's Lemma (4 points).

Let (M^{n}, g) be a Riemannian manifold.
a) Assume $n \geq 2$ and the sectional curvature K_{p} only depends on the point p. Then Riemannian curvature tensor is of the form

$$
g(R(X, Y) Z, W)=\kappa \cdot(g(X, Z) g(Y, W)-g(Y, Z) g(X, W))
$$

where $\kappa: M \rightarrow \mathbb{R}$ is a smooth function.
b) Assume $n \geq 3$ and the Riemannian curvature tensor is of the form above. Show that ric $=(n-1) \kappa g$ holds and that in this case that the function κ is locally constant. Hint: Use Exercise 3, d).

