Differential Geometry I: Exercises

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, December 12
UR

Exercise Sheet no. 8

1. Exercise (4 points).

Let $\left(M_{1}, g_{1}\right),\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds with the induced Levi-Civita connections ∇^{1}, ∇^{2}. We identify (as in Exercise sheet no. 3, Exercise 1)

$$
T_{(p, q)}\left(M_{1} \times M_{2}\right) \cong T_{p} M_{1} \times T_{q} M_{2}
$$

and define the product metric $g_{1} \oplus g_{2}$ on $M_{1} \times M_{2}$ by

$$
g_{1} \oplus g_{2}\left(\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right)=g_{1}\left(v_{1}, v_{2}\right)+g_{2}\left(w_{1}, w_{2}\right) .
$$

For vector fields $X_{i} \in \mathfrak{X}\left(M_{i}\right)$ where $i=1,2$ we define $X_{1} \oplus X_{2} \in \mathfrak{X}\left(M_{1} \times M_{2}\right)$ by the formula

$$
\left.\left(X_{1} \oplus X_{2}\right)\right|_{(p, q)}=\left(\left.X_{1}\right|_{p},\left.0\right|_{q}\right)+\left(\left.0\right|_{p},\left.X_{2}\right|_{q}\right) .
$$

a) Construct a vector $X \in \mathfrak{X}\left(\mathbb{R}^{2}\right)$ that cannot be written as $X=X_{1} \oplus X_{2}$ for vectors fields $X_{i} \in \mathfrak{X}(\mathbb{R})$.
b) Let $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ be vector fields on $M_{1} \times M_{2}$. Show that the Levi-Civita connection ∇ of $\left(M_{1} \times M_{2}, g_{1} \oplus g_{2}\right)$ satisfies

$$
\nabla_{Y} X=\nabla_{X_{1}}^{1} Y_{1}+\nabla_{X_{2}}^{2} Y_{2}
$$

c) Let c_{1}, c_{2} be geodesics on M_{1} respectively M_{2}. Conclude, that $c(t)=\left(c_{1}(t), c_{2}(t)\right)$ is a geodesic on $M_{1} \times M_{2}$.
2. Exercise (4 points).

Consider the hyperbolic plane ($\mathfrak{H}, g^{\text {hyp }}$), where

$$
\mathfrak{H}=\{x+i y \in \mathbb{C} \mid x \in \mathbb{R} \text { and } y>0\}
$$

with metric given by $g_{x+i y}^{\mathrm{hyp}}=\frac{1}{y^{2}}$ eucl $^{\text {euc }}$. Let $r>0, a \in \mathbb{R}$. Show that the half-circles

$$
C_{r, a}=\{z \in \mathfrak{H}| | z-a \mid=r\}
$$

are (up to reparametrisation) geodesics of the hyperbolic plane.
A way to solve this is as follows. First show that one can reduce to the case $(r, a)=(1,0)$. Then find a Möbius transformation $\Psi_{A}: z \mapsto \frac{a z+b}{c z+d}$ where $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{R})$, with $\Psi_{A}(i)=$ i and $\Psi_{A}(0)=-1$. Conclude the statement by application of Ψ_{A} to the geodesic $\gamma(t)=i e^{t}$.
3. Exercise: Models of the hyperbolic plane (4 points).

In this Exercise we want to identify three models of the hyperbolic plane.

- The hyperboloid model

$$
\mathbb{H}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1 \text { and } z>0\right\}
$$

equipped with the induced metric from $\mathbb{R}^{2,1}$ (as in Sheet no. 7, Exercise 1).

- The Poincaré half-plane model

$$
\mathfrak{H}=\{x+i y \in \mathbb{C} \mid y>0\}
$$

with the Riemannian metric $g_{x+i y}^{\mathfrak{5}}=\frac{1}{y^{2}} g^{\text {eucl }}$.

- The Poincaré disk model

$$
\mathbb{D}=\left\{x+i y \in \mathbb{C} \mid x^{2}+y^{2}<1\right\},
$$

equipped with the metric $g_{x+i y}^{\mathbb{D}}=\left(\frac{2}{\left(1-\left(x^{2}+y^{2}\right)\right)}\right)^{2} g^{\text {eucl }}$.
a) We define a sterographic projection $f: \mathbb{H}^{2} \rightarrow \mathbb{D}$ by the following procedure: Every point $p \in \mathbb{H}^{2}$ is send to the intersection point of the connecting straight line of p and the point $(0,0,-1)$ with the $x-y$-plane. Show that f is an isometry.
b) Show that the map

$$
h: \mathfrak{H} \rightarrow \mathbb{D}, \quad z \mapsto \frac{z-i}{z+i}
$$

is an isometry.
4. Exercise (4 points).

Let M and N be semi-Riemannian manifolds of the same dimension. Assume that N is connected.
a) Let $f_{1}, f_{2}: N \rightarrow M$ be two isometries. Assume there exists a point $p \in N$ such that $f_{1}(p)=f_{2}(p)$ and $d_{p} f_{1}=d_{p} f_{2}$ holds. Show that the two isometries coincide.
b) Let $f: M \rightarrow M$ be an isometry. Show that the fix point set $\operatorname{Fix}(f)=\{p \in M \mid f(p)=p\}$ is a submanifold ${ }^{1}$ of M.
Hint: Use the exponential function of M.

[^0]
[^0]: ${ }^{1}$ A subset $N \subset M^{m}$ of a smooth manifold M is a submanifold if for every point $p \in N$ there exists a chart $x: U \rightarrow V$ around the point p such that $x(U \cap N)$ is a submanifold of \mathbb{R}^{m}. Note that this definition does not exclude that different connected components might be of different dimension.

