

Exercise Sheet no. 7

1. Exercise (4 points). We have already seen that

$$\mathbb{H}^n \coloneqq \{ X \in \mathbb{R}^{n,1} | \langle X, X \rangle = -1, X^{n+1} > 0 \}$$

is a semi-Riemannian submanifold of $\mathbb{R}^{n,1}$. The induced Riemannian metric on \mathbb{H}^n is called the hyperbolic metric g_{hyp} .

- a) Let $f : \mathbb{R}^{n,1} \to \mathbb{R}^{n,1}$ be a linear map. Show that $f(e_1), \ldots, f(e_{n+1})$ is a generalized o.n.b. iff f is an isometry. Show that $f(\mathbb{H}^n) = \mathbb{H}^n$ if f is an isometry with $\langle e_{n+1}, f(e_{n+1}) \rangle_{n,1} < 0$.
- b) Let $p, q \in \mathbb{H}^n, p \neq q$. Construct an isometry $f : \mathbb{R}^{n,1} \to \mathbb{R}^{n,1}$ such that $\text{Fix}(f) = \text{span}\{p,q\}$. Conclude that $f|_{\mathbb{H}^n}$ defines an isometry $\mathbb{H}^n \to \mathbb{H}^n$.
- c) Define $\tilde{v} := q + \langle p, q \rangle_{n,1} \cdot p$ and $v := \tilde{v}/\sqrt{\langle \tilde{v}, \tilde{v} \rangle_{n,1}}$. Show that p, v is a generalized orthonormal basis of span $\{p, q\}$. For $t \in \mathbb{R}$ we define $\gamma_{p,v}(t) := \cosh(t)p + \sinh(t)v$. Conclude that the image of $\gamma_{p,v}$ is $\mathbb{H}^n \cap \operatorname{span}\{p, q\}$.
- d) Show that $\gamma_{p,v}$ is a geodesic. (Hint: Prop. 6.14 of the lecture can be helpful). Let γ be a geodesic in \mathbb{H}^n . Show that γ is either a constant or a reparametrisation of a $\gamma_{p,v}$ as above.

2. Exercise (4 points).

Let $F: M \to N$ be a smooth map between smooth manifolds M and N. Let X, Y (resp. \tilde{X}, \tilde{Y}) be (smooth) vector fields on M (resp. N). We say that X is F-related to \tilde{X} if $dF \circ X = \tilde{X} \circ F$ holds on M.

Show that, if X is F-related to \tilde{X} and Y is F-related to \tilde{Y} , then [X,Y] is F-related to $[\tilde{X},\tilde{Y}]$.

3. Exercise (4 points).

Let (M, g) be a semi-Riemannian manifold with Levi-Civita connection ∇ .

i) Show that there exists a unique family of \mathbb{R} -bilinear operators

$$\nabla^{(r,s)}: \mathfrak{X}(M) \times \Gamma(T^{r,s}(M)) \to \Gamma(T^{r,s}(M)), \text{ where } r, s \in \mathbb{N}_0,$$

satisfying the following properties:

a)
$$\nabla_X^{(0,0)} f = \partial_X f$$
,
b) $\nabla_X^{(1,0)} Y = \nabla_X Y$,
c) $\left(\nabla_X^{(0,1)} \omega\right) (Y) = \partial_X (\omega(Y)) - \omega(\nabla_X Y)$,

d)
$$\nabla_X^{(r+r',s+s')}(T \otimes T') = \left(\nabla_X^{(r,s)}T\right) \otimes T' + T \otimes \left(\nabla_X^{(r',s')}T'\right).$$

Hint: Show first that $\nabla^{(r,s)}$ is a local operator and then construct it chartwise. Then check that on the intersection of the domains of two charts, the covariant derivations defined by the two charts coincide.

Bonus: Show formally that this family of connections is C^{∞} -linear in the first argument:

$$\nabla_{fX}^{(r,s)}T = f \cdot \nabla_X^{(r,s)}T.$$

ii) Consider some tensor field $T \in \Gamma(T^{0,k}(M))$ with $k \in \mathbb{N}$. Show that for vector fields $X_1, \ldots, X_k \in \mathfrak{X}(M)$ one has the formula

$$\left(\nabla_X^{(0,k)}T\right)(X_1,\ldots,X_k) = \partial_X\left(T(X_1,\ldots,X_k)\right) - \sum_{i=1}^k T(X_1,\ldots,X_{i-1},\nabla_X X_i,X_{i+1},\ldots,X_k).$$

4. Exercise (4 points).

Let (M,g) be a smooth compact Riemannian manifold. For $c \in \mathbb{R}_{>0}$ show that $S_cM := \{X \in TM \mid g(X,X) = c^2\}$ is compact. Then prove that every maximal geodesic of (M,g) is defined on all of \mathbb{R} .

Hint: recall what is known for maximally defined solutions of first order ODEs satisfying the Picard-Lindelöf assumptions on an open subsets of \mathbb{R}^n .