Differential Geometry I: Exercises
University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 28
12 noon in the letterbox of your group (no. 15 or 16)

Exercise Sheet no. 6

1. Exercise (4 points). We define the hyperbolic plane as

$$\mathbb{H} \coloneqq \{x + iy | x \in \mathbb{R}, y \in \mathbb{R}_{>0}\}$$

endowed with the metric $g^{\text{hyp}} \coloneqq \frac{1}{y^2} g^{\text{eukl}}$ at z = x + iy.

- a) Compute the Christoffel symbols with respect to the chart given by the identity $\mathbb{H} \to \mathbb{H} \subset \mathbb{R}^2$.
- b) Compute explicitly the parallel transport $\mathcal{P}_{c_t,0,1}: T_{(0,1)}\mathbb{H} \to T_{(t,1)}\mathbb{H}$ along the curve $c_t: [0,1] \to \mathbb{H}$ with $c_t(s) \coloneqq (st,1)$.
- c) Let $x_0 \in \mathbb{R}$ and $a \in \mathbb{R} \setminus \{0\}$. Show that $\gamma : \mathbb{R} \to \mathbb{H}, t \mapsto (x_0, e^{at})$ satisfies $\frac{\nabla}{dt} \dot{\gamma}(t) = 0$.

2. Exercise (4 points).

We consider $S^2 := \{ p \in \mathbb{R}^3 \mid ||p|| = 1 \}$ with the metric induced from \mathbb{R}^3 .

a) We consider the following local parametrization

$$\psi: (0, 2\pi) \times (0, \pi) \to S^2, (\varphi, \theta) \mapsto (\sin(\theta) \cos(\varphi), \sin(\theta) \sin(\varphi), \cos(\theta))$$

whose inverse defines so-called *spherical polar coordinates*. We also write $x^1 = \phi$ and $x^2 = \theta$. Calculate the associated coordinate vector fields, the coefficients g_{ij} of the metric and the Christoffel symbols Γ_{ij}^k .

b) For $\theta \in (0,\pi)$ we define $c: [0,2\pi] \to S^2$, $c(t) := (\sin(\theta)\cos(t), \sin(\theta)\sin(t), \cos(\theta))$, p := c(0). Compute the parallel transport $P_{c,0,2\pi}: T_pS^2 \to T_pS^2$, so $P_{c,0,2\pi} \in \operatorname{End}(T_pS^2)$.

3. Exercise: Levi-Civita connection for submanifolds (4 points).

Assume $N, K \in \mathbb{N}_0$. Let M be a semi-Riemannian submanifold of $\mathbb{R}^{N,K} = (\mathbb{R}^{N+K}, \langle \cdot, \cdot \rangle_{N,K})$ where $\langle \cdot, \cdot \rangle_{N,K}$ was defined in Exercise 1 of Sheet no. 1. We write $\iota: M \to \mathbb{R}^{N+K}$ for the inclusion. Then for $p \in M$ we get an embedding $d_p \iota: T_p M \to \mathbb{R}^{N,K}$ which we use to identify $T_p M$ with its image in $\mathbb{R}^{N,K}$.

a) Show that there is a well-defined linear map

$$\pi_p^{\mathrm{tan}}: \mathbb{R}^{N,K} \to T_p M$$

that is the identity on T_pM and such that

$$\ker(\pi_p^{\mathrm{tan}}) = \{ X \in \mathbb{R}^{N,K} \mid \langle X, Y \rangle_{N,K} = 0 \; \forall Y \in T_p M \} \,.$$

Now let $X \in T_p M$ and let $Y \in \mathfrak{X}(M)$ be given. You may assume in this exercise that there is a smooth vector field $\widetilde{Y} \in \mathfrak{X}(\mathbb{R}^{N+K}), \widetilde{Y} = (\widetilde{Y}^1, \dots, \widetilde{Y}^{N+K}) : \mathbb{R}^{N,K} \to \mathbb{R}^{N,K}$ such that

$$\widetilde{Y}|_M = Y$$
.

Let $\partial_X \widetilde{Y}$ be defined componentwise, i.e. let $\partial_X \widetilde{Y} = (\partial_X \widetilde{Y}^1 \dots, \partial_X \widetilde{Y}^{N+K})$. We define $D_X \widetilde{Y} := \pi_p^{\operatorname{tan}}(\partial_X \widetilde{Y})$. Prove the following:

- b) $D_X \widetilde{Y}$ does not depend on how one extends Y to \widetilde{Y} . Furthermore prove that $D_X \widetilde{Y}$ is local in the sense, that for a neighborhood $U \Subset \mathbb{R}^{N,K}$ of p, the term $D_X \widetilde{Y}$ only depends on X and $Y|_{U \cap M}$.
- c) Show that $D_X \widetilde{Y}$ satisfies the properties
 - (ii) linearity in \widetilde{Y}
 - (iv) product rule
 - (v) metric compatibility

in the definition of the Levi–Civita connection in the lecture from Nov 10th given by M. Ludewig.

d) Let $\widetilde{X}: \mathbb{R}^{N,K} \to \mathbb{R}^{N,K}$ be a smooth extension of X with $\forall_{q \in M}: \widetilde{X}|_q \in T_q M$. Show

$$D_X \widetilde{Y} - D_{Y|_p} \widetilde{X} = \left[\widetilde{X}, \widetilde{Y} \right]|_p.$$

e) Conclude that $D_X \widetilde{Y} = (\nabla_X Y)|_p$.

As defined on Nov 10th, ∇ denotes the Levi-Civita connection of the semi-Riemannian manifold M in this formula.

4. Exercise (4 points).

Let M be a smooth, not necessarily compact, manifold. Given a 1-parameter group of diffeomorphisms $\varphi : M \times \mathbb{R} \to M$, $(x,t) \mapsto \varphi_t(x)$ on M, let X be the associated tangent vector field on M as in Exercise no. 3 of sheet 5. Show that, for any smooth tangent vector field Y on M and point $p \in M$ it is

$$\frac{d}{dt}\Big|_{t=0}\left((\varphi_t)_*Y\right)\Big|_p = -[X,Y]\Big|_p,$$

where, for any diffeomorphism $\psi : M \to M$, the term $\psi_* Y$ denotes the pushforward tangent vector field of Y defined by $\psi_* Y := d\psi \circ Y \circ \psi^{-1}$.