

Exercise Sheet no. 4

1. Exercise (4 points).

i) Let g be a symmetric bilinear form on a finite-dimensional vector space V, and let n_+ , n_0 and n_- be the numbers of basis vectors $e_1, \ldots, e_{n_++n_0+n_-}$ with $g(e_i, e_i) = +1, 0$ or -1 as in Sylvester's law of inertia. Calculate

 $\max \{ \dim W \mid W \text{ is a linear subspace of } V \text{ on which } g \text{ is positive definite} \} \\ \max \{ \dim W \mid W \text{ is a linear subspace of } V \text{ on which } g \text{ is negative definite} \} \\ \max \{ \dim W \mid W \text{ is a linear subspace of } V \text{ on which } g \text{ is positive semi-definite} \} \\ \max \{ \dim W \mid W \text{ is a linear subspace of } V \text{ on which } g \text{ is negative semi-definite} \} \\ \max \{ \dim W \mid W \text{ is a linear subspace of } V \text{ on which } g \text{ is negative semi-definite} \} \\ \max \{ \dim W \mid W \text{ is a linear subspace of } V \text{ with } g|_{W \times W} = 0 \}$

in terms of n_+ , n_0 and n_- . Conclude that n_+ , n_0 and n_- do not depend on the chosen basis.

ii) Let $B \in \mathbb{R}^{n \times n}$ be symmetric and $A \in GL(n, \mathbb{R})$. Show that the numbers of positive, zero and negative eigenvalues of $A^{\mathsf{T}}BA$ does not depend on A.

2. Exercise (4 points).

Let $\mathcal{A} \coloneqq \{\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha \in A}$ be an atlas of an *m*-dimensional manifold *M*. Define for all $\alpha \in A$ the sets $U_{\alpha}^{TM} \coloneqq \bigsqcup_{p \in U_{\alpha}} T_p M$ and the family $\mathcal{A}^{TM} = \{ \mathrm{d}\varphi_{\alpha} : U_{\alpha}^{TM} \to V_{\alpha} \times \mathbb{R}^m \}_{\alpha \in A}$, where for a $v \in T_p M$ we set $\mathrm{d}\varphi_{\alpha}(v) \coloneqq (p, \mathrm{d}_p \varphi_{\alpha}(v))$.

- i) Show that TM carries a unique topology such that for all $\alpha \in A$ the subset U_{α}^{TM} is open and $d\varphi_{\alpha}$ a homeomorphism.
- ii) Show that TM with this topology is a topological manifold and \mathcal{A}^{TM} a smooth atlas on TM.
- iii) Show that $\pi: TM \to M, T_pM \ni v \mapsto p$ is a smooth map of manifolds.
- iv) Show that some $X: M \to TM$ is smooth in the sense of the definition given in the lecture if and only if it is smooth as a map of manifolds $M \to TM$ and $\pi \circ X = \mathrm{id}_M$.

3. Exercise (4 points).

Let $W \coloneqq \{p \in \mathbb{R}^3 | \max\{|p_1|, |p_2|, |p_3|\} = 1\}.$

- i) Is W a submanifold of \mathbb{R}^3 ? Prove your statement.
- ii) Equip W with the topology induced from \mathbb{R}^3 and show the existence of a C^{∞} -structure on W.

4. Exercise (4 points).

Let V be an n-dimensional vector space over \mathbb{R} .

- i) Calculate $\dim(\Lambda^2 V) \otimes (\Lambda^2 V)$ and $\dim(\Lambda^3 V) \otimes V$.
- ii) Show that

$$H: (\Lambda^2 V) \otimes (\Lambda^2 V) \to (\Lambda^3 V) \otimes V$$
$$(x \wedge y) \otimes (z \wedge w) \mapsto (x \wedge y \wedge z) \otimes w - (x \wedge y \wedge w) \otimes z$$

is well-defined.

iii) Show that H is surjective and that dim ker(H) = $\frac{n^2(n^2-1)}{12}$. Hint: Calculate $H((x \land y) \otimes (z \land w))$, $H((x \land z) \otimes (w \land y))$, and $H((x \land w) \otimes (y \land z))$ in order to show that $(x \land y \land z) \otimes w$ is in the image.