Differential Geometry I: Exercises

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 14

Exercise Sheet no. 4

1. Exercise (4 points).
i) Let g be a symmetric bilinear form on a finite-dimensional vector space V, and let n_{+}, n_{0} and n_{-}be the numbers of basis vectors $e_{1}, \ldots, e_{n_{+}+n_{0}+n_{-}}$with $g\left(e_{i}, e_{i}\right)=+1,0$ or -1 as in Sylvester's law of inertia. Calculate
$\max \{\operatorname{dim} W \mid W$ is a linear subspace of V on which g is positive definite $\}$
$\max \{\operatorname{dim} W \mid W$ is a linear subspace of V on which g is negative definite $\}$
$\max \{\operatorname{dim} W \mid W$ is a linear subspace of V on which g is positive semi-definite $\}$ $\max \{\operatorname{dim} W \mid W$ is a linear subspace of V on which g is negative semi-definite $\}$ $\max \left\{\operatorname{dim} W \mid W\right.$ is a linear subspace of V with $\left.\left.g\right|_{W \times W}=0\right\}$
in terms of n_{+}, n_{0} and n_{-}. Conclude that n_{+}, n_{0} and n_{-}do not depend on the chosen basis.
ii) Let $B \in \mathbb{R}^{n \times n}$ be symmetric and $A \in \operatorname{GL}(n, \mathbb{R})$. Show that the numbers of positive, zero and negative eigenvalues of $A^{\top} B A$ does not depend on A.
2. Exercise (4 points).

Let $\mathcal{A}:=\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ be an atlas of an m-dimensional manifold M. Define for all $\alpha \in A$ the sets $U_{\alpha}^{T M}:=\bigsqcup_{p \in U_{\alpha}} T_{p} M$ and the family $\mathcal{A}^{T M}=\left\{\mathrm{d} \varphi_{\alpha}: U_{\alpha}^{T M} \rightarrow V_{\alpha} \times \mathbb{R}^{m}\right\}_{\alpha \in A}$, where for a $v \in T_{p} M$ we set $\mathrm{d} \varphi_{\alpha}(v):=\left(p, \mathrm{~d}_{p} \varphi_{\alpha}(v)\right)$.
i) Show that $T M$ carries a unique topology such that for all $\alpha \in A$ the subset $U_{\alpha}^{T M}$ is open and $\mathrm{d} \varphi_{\alpha}$ a homeomorphism.
ii) Show that $T M$ with this topology is a topological manifold and $\mathcal{A}^{T M}$ a smooth atlas on $T M$.
iii) Show that $\pi: T M \rightarrow M, T_{p} M \ni v \mapsto p$ is a smooth map of manifolds.
iv) Show that some $X: M \rightarrow T M$ is smooth in the sense of the definition given in the lecture if and only if it is smooth as a map of manifolds $M \rightarrow T M$ and $\pi \circ X=\mathrm{id}_{M}$.
3. Exercise (4 points).

Let $W:=\left\{p \in \mathbb{R}^{3} \mid \max \left\{\left|p_{1}\right|,\left|p_{2}\right|,\left|p_{3}\right|\right\}=1\right\}$.
i) Is W a submanifold of \mathbb{R}^{3} ? Prove your statement.
ii) Equip W with the topology induced from \mathbb{R}^{3} and show the existence of a C^{∞}-structure on W.
4. Exercise (4 points).

Let V be an n-dimensional vector space over \mathbb{R}.
i) Calculate $\operatorname{dim}\left(\Lambda^{2} V\right) \otimes\left(\Lambda^{2} V\right)$ and $\operatorname{dim}\left(\Lambda^{3} V\right) \otimes V$.
ii) Show that

$$
\begin{aligned}
& H:\left(\Lambda^{2} V\right) \otimes\left(\Lambda^{2} V\right) \rightarrow\left(\Lambda^{3} V\right) \otimes V \\
& (x \wedge y) \otimes(z \wedge w) \mapsto(x \wedge y \wedge z) \otimes w-(x \wedge y \wedge w) \otimes z
\end{aligned}
$$

is well-defined.
iii) Show that H is surjective and that $\operatorname{dim} \operatorname{ker}(H)=\frac{n^{2}\left(n^{2}-1\right)}{12}$.

Hint: Calculate $H((x \wedge y) \otimes(z \wedge w)), H((x \wedge z) \otimes(w \wedge y))$, and $H((x \wedge w) \otimes(y \wedge z))$ in order to show that $(x \wedge y \wedge z) \otimes w$ is in the image.

