Differential Geometry I: Exercises

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 7

Exercise Sheet no. 3

1. Exercise (4 points).

Let M and N be m-dimensional, resp. n-dimensional, C^{∞}-manifolds with atlases

$$
\mathcal{A}^{M}:=\left\{x_{i}: U_{i} \rightarrow V_{i}\right\}_{i \in I} \text { and } \mathcal{A}^{N}:=\left\{y_{j}: U_{j}^{\prime} \rightarrow V_{j}^{\prime}\right\}_{j \in J} .
$$

Define the family

$$
\mathcal{A}^{M \times N}:=\left\{z_{i, j}: U_{i} \times U_{j}^{\prime} \rightarrow V_{i} \times V_{j}^{\prime}\right\}_{(i, j) \in I \times J} \text { with } z_{i, j}(p, q):=(x(p), y(q)) .
$$

a) Show that $\mathcal{A}^{M \times N}$ is a C^{∞}-atlas on $M \times N$ with the product topology.
b) Equip $M \times N$ with the smooth structure defined by $\mathcal{A}^{M \times N}$ and show:
i) The projection $\pi^{M}: M \times N \rightarrow M$ is C^{∞}. (And, of course, so is π^{N}.)
ii) For any smooth manifold W and smooth maps $f: W \rightarrow M$ and $g: W \rightarrow N$ the map

$$
(f, g): W \rightarrow M \times N p \mapsto(f(p), g(p))
$$

is smooth again.
c) Show that

$$
T_{(p, q)}(M \times N) \rightarrow T_{p} M \times T_{q} N, \quad X \mapsto\left(d_{p} \pi^{M}(X), d_{q} \pi^{N}(X)\right)
$$

is an isomorphism of vector spaces.
2. Exercise (4 points).

Let $k \in \mathbb{N}$ and $\epsilon>0$ be given.
a) Define a diffeomorphism $F: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$ such that F restricted to $\mathbb{R}^{k+1} \backslash B_{\epsilon}(0)$ is the inclusion

$$
\mathbb{R}^{k+1} \backslash B_{\epsilon}(0) \hookrightarrow \mathbb{R}^{k+1}
$$

but $F\left(\mathbb{R}^{k} \times\{0\}\right) \not \subset \mathbb{R}^{k} \times\{0\}$.
Hint: Use the graph of a function $\eta: \mathbb{R}^{k} \rightarrow[0, \epsilon / 4]$ with support in $\mathbb{R}^{k} \backslash B_{\epsilon / 2}(0)$ and use a function $\chi: \mathbb{R} \rightarrow[0,1]$ with support in $(-\epsilon / 2, \epsilon / 2)$ and some further properties.
b) Show for all $m, n \geq 1$ that the atlas $\mathcal{A}^{M \times N}$ constructed in Exercise 1 is not a C^{∞}-structure.
3. Exercise (4 points).

Viewing \mathbb{Z}^{n} as a subgroup of $\left(\mathbb{R}^{n},+\right)$ one obtains the quotient $T^{n}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$ (the n dimensional torus) which, equipped with the quotient topology, is a topological manifold (you need not to prove this fact). Let $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ be the projection.
a) Construct a C^{∞}-atlas $=\left\{x_{i}: U_{i} \rightarrow V_{i}\right\}_{i \in I}$ on T^{n} such that every $p \in \mathbb{R}^{n}$ has a neighbourhood U that turns the restriction $\left.\pi\right|_{U}: U \rightarrow \pi(U)$ into a diffeomorphism.
b) Show that T^{n} is diffeomorphic to $\underbrace{S^{1} \times \ldots \times S^{1}}_{n \text { times }}$.
c) Consider the submanifold

$$
\mathbb{T}:=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid\left(\sqrt{x^{2}+y^{2}}-2\right)^{2}+z^{2}=1\right\}
$$

of \mathbb{R}^{3} which is obtained by rotating a circle in the halfplane $\{x>0, y=0\} \subset \mathbb{R}^{3}$ around the z-axis (you do not have to prove this).
Show that T^{2} is diffeomorphic to \mathbb{T}.
4. Exercise (4 points).

Let G be a C^{∞}-manifold together with a smooth map $m: G \times G \rightarrow G$ such that (G, m) is a group. In particular there is a neutral element $e \in G$.
a) Calculate

$$
d_{(e, e)} m: T_{(e, e)}(G \times G)\left(\cong T_{e} G \times T_{e} G\right) \rightarrow T_{e} G .
$$

Hint: Calculate $d_{(e, e)} m(X, 0)$ and $d_{(e, e)} m(0, X)$ for $X \in T_{e} G$.
b) Let $x: U \rightarrow V$ be a chart of G with $e \in U$ and $x(e)=0$. Let $U^{\prime} \subset U$ be an open neighbourhood of e such that $m\left(U^{\prime} \times U^{\prime}\right) \subset U$. Denote $V^{\prime}:=x\left(U^{\prime}\right)$ and show that the differential of

$$
F: V^{\prime} \times V^{\prime} \rightarrow V,(p, q) \mapsto x\left(m\left(x^{-1}(p), x^{-1}(q)\right)\right)
$$

is surjective in a neighbourhood of $0 \in V^{\prime} \times V^{\prime}$. Hint: apply the implicit function theorem.
c) Show that there is an open neighbourhood W of e and a smooth map inv: $W \rightarrow G$ satisfying $m(p, \operatorname{inv}(p))=e$ for $p \in W$. Hint: Implicite function theorem.

Bonus: Show that the map inv with its property in c) can be used to prove that $G \rightarrow G$, $g \mapsto g^{-1}$ is smooth. Hint: Use $m(., g): G \rightarrow G, g \in G$ to show smoothness on $m\left(W, g^{-1}\right)$.

