

Exercise Sheet no. 3

1. Exercise (4 points).

Let M and N be m-dimensional, resp. n-dimensional, C^{∞} -manifolds with atlases

$$\mathcal{A}^M \coloneqq \{x_i : U_i \to V_i\}_{i \in I} \text{ and } \mathcal{A}^N \coloneqq \{y_j : U'_j \to V'_j\}_{j \in J}.$$

Define the family

$$\mathcal{A}^{M \times N} \coloneqq \{ z_{i,j} : U_i \times U'_j \to V_i \times V'_j \}_{(i,j) \in I \times J} \text{ with } z_{i,j}(p,q) \coloneqq (x(p), y(q)).$$

- a) Show that $\mathcal{A}^{M \times N}$ is a C^{∞} -atlas on $M \times N$ with the product topology.
- b) Equip $M \times N$ with the smooth structure defined by $\mathcal{A}^{M \times N}$ and show:
 - i) The projection $\pi^M : M \times N \to M$ is C^{∞} . (And, of course, so is π^N .)
 - ii) For any smooth manifold W and smooth maps $f:W \to M$ and $g:W \to N$ the map

$$(f,g): W \to M \times N \ p \mapsto (f(p),g(p))$$

is smooth again.

c) Show that

$$T_{(p,q)}(M \times N) \to T_p M \times T_q N, \ X \mapsto (d_p \pi^M(X), d_q \pi^N(X))$$

is an isomorphism of vector spaces.

2. Exercise (4 points).

Let $k \in \mathbb{N}$ and $\epsilon > 0$ be given.

a) Define a diffeomorphism $F : \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$ such that F restricted to $\mathbb{R}^{k+1} \smallsetminus B_{\epsilon}(0)$ is the inclusion

$$\mathbb{R}^{k+1} \smallsetminus B_{\epsilon}(0) \hookrightarrow \mathbb{R}^{k+1},$$

but $F(\mathbb{R}^k \times \{0\}) \notin \mathbb{R}^k \times \{0\}$.

Hint: Use the graph of a function $\eta: \mathbb{R}^k \to [0, \epsilon/4]$ with support in $\mathbb{R}^k \setminus B_{\epsilon/2}(0)$ and use a function $\chi: \mathbb{R} \to [0, 1]$ with support in $(-\epsilon/2, \epsilon/2)$ and some further properties.

b) Show for all $m, n \ge 1$ that the atlas $\mathcal{A}^{M \times N}$ constructed in Exercise 1 is not a C^{∞} -structure.

3. Exercise (4 points).

Viewing \mathbb{Z}^n as a subgroup of $(\mathbb{R}^n, +)$ one obtains the quotient $T^n := \mathbb{R}^n/\mathbb{Z}^n$ (the ndimensional torus) which, equipped with the quotient topology, is a topological manifold (you need not to prove this fact). Let $\pi : \mathbb{R}^n \to T^n$ be the projection.

- a) Construct a C^{∞} -atlas = $\{x_i : U_i \to V_i\}_{i \in I}$ on T^n such that every $p \in \mathbb{R}^n$ has a neighbourhood U that turns the restriction $\pi|_U: U \to \pi(U)$ into a diffeomorphism.
- b) Show that T^n is diffeomorphic to $\underbrace{S^1 \times \ldots \times S^1}_{n \text{ times}}$.

$$n$$
 times

c) Consider the submanifold

$$\mathbb{T} := \{ (x, y, z)^T \in \mathbb{R}^3 | (\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1 \}$$

of \mathbb{R}^3 which is obtained by rotating a circle in the halfplane $\{x > 0, y = 0\} \subset \mathbb{R}^3$ around the z-axis (you do not have to prove this). Show that T^2 is diffeomorphic to \mathbb{T} .

4. Exercise (4 points).

Let G be a C^{∞} -manifold together with a smooth map $m: G \times G \to G$ such that (G, m)is a group. In particular there is a neutral element $e \in G$.

a) Calculate

$$d_{(e,e)}m:T_{(e,e)}(G\times G)(\cong T_eG\times T_eG)\to T_eG.$$

Hint: Calculate $d_{(e,e)}m(X,0)$ and $d_{(e,e)}m(0,X)$ for $X \in T_eG$.

b) Let $x: U \to V$ be a chart of G with $e \in U$ and x(e) = 0. Let $U' \subset U$ be an open neighbourhood of e such that $m(U' \times U') \subset U$. Denote V' := x(U') and show that the differential of

$$F: V' \times V' \to V, \ (p,q) \mapsto x(m(x^{-1}(p), x^{-1}(q)))$$

is surjective in a neighbourhood of $0 \in V' \times V'$. Hint: apply the implicit function theorem.

c) Show that there is an open neighbourhood W of e and a smooth map $\mathrm{inv}:W\to G$ satisfying m(p, inv(p)) = e for $p \in W$. Hint: Implicite function theorem.

Bonus: Show that the map inv with its property in c) can be used to prove that $G \to G$, $q \mapsto q^{-1}$ is smooth. Hint: Use $m(.,q): G \to G$, $q \in G$ to show smoothness on $m(W,q^{-1})$.