Differential Geometry I: Exercises

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, October 31

Exercise Sheet no. 2

1. Exercise (4 points).

Let $k \in \mathbb{N} \cup\{0, \infty, \omega\}$.
a) Show that any C^{k}-atlas \mathcal{A} is contained in exactly one C^{k}-structure $\overline{\mathcal{A}}$.

Hint: Define $\overline{\mathcal{A}}$ as the set of all charts that are C^{k}-compatible with all charts of \mathcal{A}. Then show the required properties.
b) Assume now \mathcal{A}_{1} and \mathcal{A}_{2} to be two C^{k}-atlases of M. Show that: $\overline{\mathcal{A}_{1}}=\overline{\mathcal{A}_{2}}$ if and only if all charts of \mathcal{A}_{1} are C^{k}-compatible with all charts of \mathcal{A}_{2}.
2. Exercise (4 points).

We consider \mathbb{R} with the standard topology, which is obviously a topological manifold. We consider four atlases $\mathcal{A}_{\text {std }}, \mathcal{A}_{\text {quad }}, \mathcal{A}_{\text {cub }}$, and $\mathcal{A}_{\text {unif }}$ on \mathbb{R} :

$$
\begin{array}{ll}
\mathcal{A}_{\text {std }}:=\left\{\left(\operatorname{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}\right)\right\}, & \mathcal{A}_{\text {quad }}:=\left\{\left(\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}\right),\left(\mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}, x \mapsto x^{2}\right)\right\} \\
\mathcal{A}_{\text {cub }}:=\left\{\left(\mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}\right)\right\} & \mathcal{A}_{\text {unif }}:=\mathcal{A}_{\text {std }} \cup \mathcal{A}_{\text {cub }}
\end{array}
$$

a) Determine for each atlas the maximal k such that it is a C^{k}-atlas.
b) Show that the C^{1}-structure defined by $\mathcal{A}_{\text {std }}$ is different from the C^{1}-structure defined by $\mathcal{A}_{\text {cub }}$. Are there two atlases among the four ones defined above, that define the same C^{1}-structure?
c) Construct a diffeomorphism $\left(\mathbb{R}, \mathcal{A}_{\text {std }}\right) \rightarrow\left(\mathbb{R}, \mathcal{A}_{\text {cub }}\right)$.
3. Exercise (4 points).

We define a symmetric bilinear form $g^{(1,1)}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
g^{(1,1)}\left(\binom{x}{y},\binom{x^{\prime}}{y^{\prime}}\right)=x x^{\prime}-y y^{\prime} \quad \text { for all } \quad\binom{x}{y},\binom{x^{\prime}}{y^{\prime}} \in \mathbb{R}^{2}
$$

- Show that $\left(b_{1}, b_{2}\right)$ is a generalized orthonormal basis for $g^{(1,1)}$ if and only if there exists a $t \in \mathbb{R}$ and $\delta, \epsilon \in\{1,-1\}$ such that

$$
b_{1}=\delta \cdot\binom{\cosh t}{\sinh t} \quad \text { and } \quad b_{2}=\epsilon \cdot\binom{\sinh t}{\cosh t} .
$$

- Determine the number of connected components of $O(1,1):=\operatorname{Isom}_{\operatorname{lin}}\left(\mathbb{R}^{2}, g^{(1,1)}\right)$.

4. Exercise (4 points).

Let $\mathbb{R}_{\text {sym }}^{n \times n} \subset \mathbb{R}^{n \times n}$ denote the subspace of symmetric $n \times n$-matrices.
a) Let $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}_{\mathrm{sym}}^{n \times n}, A \mapsto A^{T} A$, with A^{T} denoting matrix transposition. Show that $\mathbf{1}_{n}$ is a regular value for f.
Recall: Some c is by definition a regular value, if the differential $d_{x} f$ has full rank for all $x \in f^{-1}(c)$.
b) Determine $\operatorname{ker}\left(d_{1_{n}} f\right)$.
c) Deduce that the orthogonal group $\mathrm{O}(n)$ is an $\frac{n(n-1)}{2}$-dimensional submanifold of $\mathbb{R}^{n^{2}} \cong \mathbb{R}^{n \times n}$.
d) Construct a chart of $\mathrm{O}(n)$ whose chart neighborhood contains $\mathbf{1}_{n}$. Hint: Consider the exponential map $\exp (A):=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}$.

