

Exercise Sheet no. 2

1. Exercise (4 points).

Let $k \in \mathbb{N} \cup \{0, \infty, \omega\}$.

- a) Show that any C^k-atlas A is contained in exactly one C^k-structure A. *Hint: Define* A as the set of all charts that are C^k-compatible with all charts of A. *Then show the required properties.*
- b) Assume now \mathcal{A}_1 and \mathcal{A}_2 to be two C^k -atlases of M. Show that: $\overline{\mathcal{A}_1} = \overline{\mathcal{A}_2}$ if and only if all charts of \mathcal{A}_1 are C^k -compatible with all charts of \mathcal{A}_2 .

2. Exercise (4 points).

We consider \mathbb{R} with the standard topology, which is obviously a topological manifold. We consider four atlases \mathcal{A}_{std} , \mathcal{A}_{quad} , \mathcal{A}_{cub} , and \mathcal{A}_{unif} on \mathbb{R} :

$$\mathcal{A}_{\text{std}} \coloneqq \{ (\text{id}_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}) \}, \qquad \qquad \mathcal{A}_{\text{quad}} \coloneqq \{ (\text{id}_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}), (\mathbb{R}_{>0} \to \mathbb{R}_{>0}, x \mapsto x^2) \}$$
$$\mathcal{A}_{\text{cub}} \coloneqq \{ (\mathbb{R} \to \mathbb{R}, x \mapsto x^3) \} \qquad \qquad \mathcal{A}_{\text{unif}} \coloneqq \mathcal{A}_{\text{std}} \cup \mathcal{A}_{\text{cub}}$$

- a) Determine for each atlas the maximal k such that it is a C^k -atlas.
- b) Show that the C^1 -structure defined by \mathcal{A}_{std} is different from the C^1 -structure defined by \mathcal{A}_{cub} . Are there two atlases among the four ones defined above, that define the same C^1 -structure?
- c) Construct a diffeomorphism $(\mathbb{R}, \mathcal{A}_{std}) \rightarrow (\mathbb{R}, \mathcal{A}_{cub})$.

3. Exercise (4 points).

We define a symmetric bilinear form $g^{(1,1)}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by setting

$$g^{(1,1)}\left(\binom{x}{y},\binom{x'}{y'}\right) = xx' - yy' \text{ for all } \binom{x}{y},\binom{x'}{y'} \in \mathbb{R}^2.$$

• Show that (b_1, b_2) is a generalized orthonormal basis for $g^{(1,1)}$ if and only if there exists a $t \in \mathbb{R}$ and $\delta, \epsilon \in \{1, -1\}$ such that

$$b_1 = \delta \cdot \begin{pmatrix} \cosh t \\ \sinh t \end{pmatrix}$$
 and $b_2 = \epsilon \cdot \begin{pmatrix} \sinh t \\ \cosh t \end{pmatrix}$.

• Determine the number of connected components of $O(1,1) := \text{Isom}_{\text{lin}}(\mathbb{R}^2, g^{(1,1)})$.

4. Exercise (4 points).

Let $\mathbb{R}_{\text{sym}}^{n \times n} \subset \mathbb{R}^{n \times n}$ denote the subspace of symmetric $n \times n$ -matrices.

- a) Let $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}_{\text{sym}}$, $A \mapsto A^T A$, with A^T denoting matrix transposition. Show that $\mathbf{1}_n$ is a regular value for f. Recall: Some c is by definition a regular value, if the differential $d_x f$ has full rank for all $x \in f^{-1}(c)$.
- b) Determine $\ker(d_{\mathbf{1}_n}f)$.
- c) Deduce that the orthogonal group O(n) is an $\frac{n(n-1)}{2}$ -dimensional submanifold of $\mathbb{R}^{n^2} \cong \mathbb{R}^{n \times n}$.
- d) Construct a chart of O(n) whose chart neighborhood contains $\mathbf{1}_n$. Hint: Consider the exponential map $\exp(A) \coloneqq \sum_{n=0}^{\infty} \frac{1}{n!} A^n$.