

Exercise Sheet no. 1

1. Exercise (4 points).

- i) Let $M := S^n := \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$ be the *n*-sphere endowed with the topology induced by \mathbb{R}^{n+1} . Construct for any point $p \in S^n$ an open neighbourhood V of p in S^n and a homeomorphism from V to \mathbb{R}^n .
- ii) On \mathbb{R}^{n+k} define

$$\left(\left(\begin{array}{c} x_1 \\ \vdots \\ x_{n+k} \end{array} \right), \left(\begin{array}{c} y_1 \\ \vdots \\ y_{n+k} \end{array} \right) \right)_{n,k} \coloneqq \sum_{i=1}^n x_i y_i - \sum_{i=n+1}^{n+k} x_i y_i.$$

Show for all $r \in \mathbb{R} \setminus \{0\}$, that $M := \{x \mid \langle x, x \rangle_{n,k} = r\}$ is a submanifold of \mathbb{R}^{n+k} .

2. Exercise (4 points).

On the set M we define the metric:

$$d: M \times M \to \mathbb{R}_{\geq 0}, \ (x, y) \mapsto \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases},$$

inducing the discrete topology. Show that M is a Hausdorff space and locally Euclidean of some dimension $n \in \mathbb{N}_0$. What number is n? Show that the topology of M has a countable base, if and only if M is countable.

3. Exercise (4 points).

Let $n \in \mathbb{N}$ and $\mathbb{R}P^n$ be the set of 1-dimensional vector subspaces of \mathbb{R}^{n+1} .

i) Identify $\mathbb{R}P^n$ with the quotient $(\mathbb{R}^{n+1}\setminus\{0\})\setminus\sim$, where $x \sim y \iff \exists \lambda \in \mathbb{R}^{\times}$ s.t. $x = \lambda y$ and endow it with the quotient topology. Show that $\mathbb{R}P^n$ is a compact Hausdorff space satisfying the second axiom of countability.

Hint for the Hausdorff property: You may use without a proof the triangle inequality for small angles, $\alpha_{x,z} \leq \alpha_{x,y} + \alpha_{y,z}$ where $\cos \alpha_{a,b} = \frac{\langle a,b \rangle}{\|a\| \|b\|}$.

ii) Show that the maps

$$U_j \coloneqq \{ [x] \in \mathbb{R}P^n \,|\, x_j \neq 0 \} \xrightarrow{\varphi_j} \mathbb{R}^n, \ [x] \mapsto \frac{1}{x_j} (x_1, \dots, \widehat{x_j}, \dots, x_{n+1}), \ 1 \le j \le n+1,$$

are well-defined homeomorphisms (the " $\widehat{x_j}$ " means omitting ", x_j ,").

- iii) Show that $\mathcal{A} = (\phi_j: U_j \to \mathbb{R}^n)_{j \in \{1,2,\dots,n+1\}}$ is an atlas for $\mathbb{R}P^n$.
- iv) For $i, j \in \{1, \ldots, n+1\}, i \neq j$ show that $\phi_i(U_i \cap U_j)$ is an open subset of \mathbb{R}^n and that

$$\phi_i \circ (\phi_j)^{-1} \colon \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$$

is a $C^\infty\text{-diffeomorphism.}$

4. Exercise (4 points).

A topological space X is called *path-connected*, if any two points of X can be connected by a continuous path $\gamma : [0,1] \to X$. A topological space is called *locally path-connected*, if any neighbourhood of any point $x \in X$ contains a path-connected neighbourhood of x.

- i) Show that any topological manifold is locally path-connected.
- ii) Show that the connected components of a locally path-connected topological space are open and closed.
- iii) Deduce that the connected components of an n-dimensional topological manifold are again n-dimensional topological manifolds.