

# **Recap Exercise Sheet**

### 1. Exercise.

- 1.) A topological space X is called locally Euclidean of dimension  $n \in \mathbb{N}$ , if every  $x \in X$  has an open neighbourhood U, such that U is homeomorphic to  $\mathbb{R}^n$ .
- 2.) A topological space X satisfies the second axiom of countability, if it has a countable basis of the topology (see e.g. section 1.1 in the script on Analysis IV by Prof. Garcke).
- 3.) A topological space X is called separable, if it contains a countable dense subset.

Let X be a locally Euclidean topological space satisfying the second axiom of countability.

- i) Show that X can be covered by countably many neighbourhoods as in point 1.) above.
- ii) Show that X is separable.

## 2. Exercise.

Let X be  $\mathbb{R} \cup \{p\}$ , where p is some object not contained in  $\mathbb{R}$  and define

 $\mathcal{O} \coloneqq \left\{ U \mid U \text{ open in } \mathbb{R} \right\} \cup \left\{ (U \setminus \{0\}) \cup \{p\} \mid U \text{ open in } \mathbb{R}, \ 0 \in U \right\} \cup \left\{ U \cup \{p\} \mid U \text{ open in } \mathbb{R}, \ 0 \in U \right\}.$ 

Show that  $\mathcal{O}$  is a topology on X and prove that it is locally Euclidean, but not Hausdorff.

### 3. Exercise.

Let X be a topological space,  $x \in X$ . The connected component of x is defined as the union of all connected subsets of X containing x. Show that:

- i) The connected component of x is connected.
- ii) The connected component of x is closed in X.

### 4. Exercise.

Let X be a Hausdorff space such that every point in X has a compact neighbourhood. Show the following property (called local compactness): For any  $x \in X$  and any neighbourhood U of x there is a compact neighbourhood of x contained in U.