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1. Exercise.

1.) A topological space X is called locally Euclidean of dimension n ∈ N, if every x ∈X
has an open neighbourhood U , such that U is homeomorphic to Rn.

2.) A topological space X satisfies the second axiom of countability, if it has a countable
basis of the topology (see e.g. section 1.1 in the script on Analysis IV by Prof.
Garcke).

3.) A topological space X is called separable, if it contains a countable dense subset.

Let X be a locally Euclidean topological space satisfying the second axiom of countability.

i) Show that X can be covered by countably many neighbourhoods as in point 1.)
above.

ii) Show that X is separable.

2. Exercise.
Let X be R ∪ {p}, where p is some object not contained in R and define

O ∶= {U ∣ U open in R}∪{(U/{0})∪{p} ∣ U open in R, 0 ∈ U}∪{U∪{p} ∣ U open in R, 0 ∈ U} .

Show that O is a topology on X and prove that it is locally Euclidean, but not Hausdorff.

3. Exercise.
Let X be a topological space, x ∈ X. The connected component of x is defined as the
union of all connected subsets of X containing x. Show that:

i) The connected component of x is connected.

ii) The connected component of x is closed in X.

4. Exercise.
Let X be a Hausdorff space such that every point in X has a compact neighbourhood.
Show the following property (called local compactness): For any x ∈ X and any neigh-
bourhood U of x there is a compact neighbourhood of x contained in U .
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1. Exercise (4 points).

i) Let M ∶= Sn ∶= {x ∈ Rn+1 ∣ ∥x∥ = 1} be the n-sphere endowed with the topology
induced by Rn+1. Construct for any point p ∈ Sn an open neighbourhood V of p in
Sn and a homeomorphism from V to Rn.

ii) On Rn+k define
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Show for all r ∈ R/{0}, that M ∶= {x ∣ ⟨x,x⟩n,k = r} is a submanifold of Rn+k.

2. Exercise (4 points).
On the set M we define the metric:

d ∶M ×M → R≥0, (x, y)↦ {
1 x ≠ y
0 x = y

,

inducing the discrete topology. Show that M is a Hausdorff space and locally Euclidean of
some dimension n ∈ N0. What number is n? Show that the topology of M has a countable
base, if and only if M is countable.

3. Exercise (4 points).
Let n ∈ N and RPn be the set of 1-dimensional vector subspaces of Rn+1.

i) Identify RPn with the quotient (Rn+1/{0}) /∼, where x ∼ y ⇐⇒ ∃λ ∈ R× s.t. x = λy
and endow it with the quotient topology. Show that RPn is a compact Hausdorff
space satisfying the second axiom of countability.
Hint for the Hausdorff property: You may use without a proof the triangle inequality
for small angles, αx,z ≤ αx,y + αy,z where cosαa,b = ⟨a,b⟩

∥a∥∥b∥ .

ii) Show that the maps

Uj ∶= {[x] ∈ RPn ∣xj ≠ 0}
ϕj→ Rn, [x]↦ 1

xj
(x1, . . . , x̂j, . . . , xn+1), 1 ≤ j ≤ n + 1,

are well-defined homeomorphisms (the “x̂j” means omitting “, xj,”).

iii) Show that A = (φj ∶Uj → Rn)j∈{1,2,...,n+1} is an atlas for RPn.

iv) For i, j ∈ {1, . . . , n+ 1}, i ≠ j show that φj(Ui ∩Uj) is an open subset of Rn and that

φi ○ (φj)−1∶φj(Ui ∩Uj)→ φi(Ui ∩Uj)

is a C∞-diffeomorphism.



4. Exercise (4 points).
A topological space X is called path-connected, if any two points of X can be connected
by a continuous path γ ∶ [0,1] → X. A topological space is called locally path-connected,
if any neighbourhood of any point x ∈X contains a path-connected neighbourhood of x.

i) Show that any topological manifold is locally path-connected.

ii) Show that the connected components of a locally path-connected topological space
are open and closed.

iii) Deduce that the connected components of an n-dimensional topological manifold
are again n-dimensional topological manifolds.
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1. Exercise (4 points).
Let k ∈ N ∪ {0,∞, ω}.

a) Show that any Ck-atlas A is contained in exactly one Ck-structure A.
Hint: Define A as the set of all charts that are Ck-compatible with all charts of A.
Then show the required properties.

b) Assume now A1 and A2 to be two Ck-atlases of M . Show that: A1 = A2 if and only
if all charts of A1 are Ck-compatible with all charts of A2.

2. Exercise (4 points).
We consider R with the standard topology, which is obviously a topological manifold. We
consider four atlases Astd, Aquad, Acub, and Aunif on R:

Astd ∶= {(idR ∶ R→ R)}, Aquad ∶= {(idR ∶ R→ R), (R>0 → R>0, x↦ x2)}
Acub ∶= {(R→ R, x↦ x3)} Aunif ∶= Astd ∪Acub

a) Determine for each atlas the maximal k such that it is a Ck-atlas.

b) Show that the C1-structure defined by Astd is different from the C1-structure defined
by Acub. Are there two atlases among the four ones defined above, that define the
same C1-structure?

c) Construct a diffeomorphism (R,Astd)→ (R,Acub).

3. Exercise (4 points).
We define a symmetric bilinear form g(1,1) ∶ R2 ×R2 → R by setting

g(1,1) ((x
y
),(x

′

y′
)) = xx′ − yy′ for all (x

y
),(x

′

y′
) ∈ R2.

• Show that (b1, b2) is a generalized orthonormal basis for g(1,1) if and only if there
exists a t ∈ R and δ, ε ∈ {1,−1} such that

b1 = δ ⋅ (
cosh t

sinh t
) and b2 = ε ⋅ (

sinh t

cosh t
).

• Determine the number of connected components of O(1,1) ∶= Isomlin (R2, g(1,1)) .



4. Exercise (4 points).
Let Rn×n

sym ⊂ Rn×n denote the subspace of symmetric n × n-matrices.

a) Let f ∶ Rn×n → Rn×n
sym, A ↦ ATA, with AT denoting matrix transposition. Show that

1n is a regular value for f .
Recall: Some c is by definition a regular value, if the differential dxf has full rank
for all x ∈ f−1(c).

b) Determine ker(d1nf).

c) Deduce that the orthogonal group O(n) is an n(n−1)
2 -dimensional submanifold of

Rn2 ≅ Rn×n.

d) Construct a chart of O(n) whose chart neighborhood contains 1n.
Hint: Consider the exponential map exp(A) ∶= ∑∞

n=0
1
n!A

n.
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1. Exercise (4 points).
Let M and N be m−dimensional, resp. n−dimensional, C∞−manifolds with atlases

AM ∶= {xi ∶ Ui → Vi}i∈I and AN ∶= {yj ∶ U
′
j → V ′

j }j∈J .

Define the family

AM×N ∶= {zi,j ∶ Ui ×U
′
j → Vi × V

′
j }(i,j)∈I×J with zi,j(p, q) ∶= (x(p), y(q)).

a) Show that AM×N is a C∞−atlas on M ×N with the product topology.

b) Equip M ×N with the smooth structure defined by AM×N and show:

i) The projection πM ∶M ×N →M is C∞. (And, of course, so is πN .)

ii) For any smooth manifold W and smooth maps f ∶W →M and g ∶W → N the
map

(f, g) ∶W →M ×N p↦ (f(p), g(p))

is smooth again.

c) Show that

T(p,q)(M ×N)→ TpM × TqN, X ↦ (dpπ
M(X), dqπ

N(X))

is an isomorphism of vector spaces.

2. Exercise (4 points).
Let k ∈ N and ε > 0 be given.

a) Define a diffeomorphism F ∶ Rk+1 → Rk+1 such that F restricted to Rk+1 ∖Bε(0) is
the inclusion

Rk+1 ∖Bε(0)↪ Rk+1,

but F (Rk × {0}) /⊂ Rk × {0}.
Hint: Use the graph of a function η∶Rk → [0, ε/4] with support in Rk ∖Bε/2(0) and
use a function χ∶R→ [0,1] with support in (−ε/2, ε/2) and some further properties.

b) Show for all m,n ≥ 1 that the atlas AM×N constructed in Exercise 1 is not a
C∞−structure.



3. Exercise (4 points).
Viewing Zn as a subgroup of (Rn,+) one obtains the quotient T n ∶= Rn/Zn (the n-
dimensional torus) which, equipped with the quotient topology, is a topological manifold
(you need not to prove this fact). Let π ∶ Rn → T n be the projection.

a) Construct a C∞-atlas = {xi ∶ Ui → Vi}i∈I on T n such that every p ∈ Rn has a
neighbourhood U that turns the restriction π∣U ∶ U → π(U) into a diffeomorphism.

b) Show that T n is diffeomorphic to S1 × . . . × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.

c) Consider the submanifold

T ∶= {(x, y, z)T ∈ R3∣(
√
x2 + y2 − 2)2 + z2 = 1}

of R3 which is obtained by rotating a circle in the halfplane {x > 0, y = 0} ⊂ R3

around the z-axis (you do not have to prove this).
Show that T 2 is diffeomorphic to T.

4. Exercise (4 points).
Let G be a C∞−manifold together with a smooth map m ∶ G ×G → G such that (G,m)

is a group. In particular there is a neutral element e ∈ G.

a) Calculate
d(e,e)m ∶ T(e,e)(G ×G)(≅ TeG × TeG)→ TeG.

Hint: Calculate d(e,e)m(X,0) and d(e,e)m(0,X) for X ∈ TeG.

b) Let x ∶ U → V be a chart of G with e ∈ U and x(e) = 0. Let U ′ ⊂ U be an open
neighbourhood of e such that m(U ′ × U ′) ⊂ U . Denote V ′ ∶= x(U ′) and show that
the differential of

F ∶ V ′ × V ′ → V, (p, q)↦ x(m(x−1(p), x−1(q)))

is surjective in a neighbourhood of 0 ∈ V ′ × V ′. Hint: apply the implicit function
theorem.

c) Show that there is an open neighbourhood W of e and a smooth map inv ∶W → G
satisfying m(p, inv(p)) = e for p ∈W . Hint: Implicite function theorem.

Bonus: Show that the map inv with its property in c) can be used to prove that G → G,
g ↦ g−1 is smooth. Hint: Use m(., g) ∶ G→ G, g ∈ G to show smoothness on m(W,g−1).
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1. Exercise (4 points).

i) Let g be a symmetric bilinear form on a finite-dimensional vector space V , and let n+,
n0 and n− be the numbers of basis vectors e1, . . . , en++n0+n− with g(ei, ei) = +1,0 or −1
as in Sylvester’s law of inertia. Calculate

max{dimW ∣ W is a linear subspace of V on which g is positive definite}
max{dimW ∣ W is a linear subspace of V on which g is negative definite}
max{dimW ∣ W is a linear subspace of V on which g is positive semi-definite}
max{dimW ∣ W is a linear subspace of V on which g is negative semi-definite}
max{dimW ∣ W is a linear subspace of V with g∣W×W = 0}

in terms of n+, n0 and n−. Conclude that n+, n0 and n− do not depend on the chosen
basis.

ii) Let B ∈ Rn×n be symmetric and A ∈ GL(n,R). Show that the numbers of positive,
zero and negative eigenvalues of A⊺BA does not depend on A.

2. Exercise (4 points).
Let A ∶= {ϕα ∶ Uα → Vα}α∈A be an atlas of an m−dimensional manifold M . Define for all
α ∈ A the sets UTM

α ∶= ⊔
p∈Uα

TpM and the family ATM = {dϕα ∶ UTM
α → Vα ×Rm}α∈A, where

for a v ∈ TpM we set dϕα(v) ∶= (p,dpϕα(v)).

i) Show that TM carries a unique topology such that for all α ∈ A the subset UTM
α is

open and dϕα a homeomorphism.

ii) Show that TM with this topology is a topological manifold and ATM a smooth atlas
on TM .

iii) Show that π ∶ TM →M , TpM ∋ v ↦ p is a smooth map of manifolds.

iv) Show that some X ∶M → TM is smooth in the sense of the definition given in the
lecture if and only if it is smooth as a map of manifolds M → TM and π ○X = idM .

3. Exercise (4 points).
Let W ∶= {p ∈ R3∣max{∣p1∣, ∣p2∣, ∣p3∣} = 1}.

i) Is W a submanifold of R3? Prove your statement.

ii) EquipW with the topology induced from R3 and show the existence of a C∞−structure
on W .



4. Exercise (4 points).
Let V be an n−dimensional vector space over R.

i) Calculate dim(Λ2V )⊗ (Λ2V ) and dim(Λ3V )⊗ V .

ii) Show that

H ∶ (Λ2V )⊗ (Λ2V )→ (Λ3V )⊗ V
(x ∧ y)⊗ (z ∧w)↦ (x ∧ y ∧ z)⊗w − (x ∧ y ∧w)⊗ z

is well-defined.

iii) Show that H is surjective and that dim ker(H) = n2(n2−1)
12 .

Hint: Calculate H((x∧ y)⊗ (z ∧w)), H((x∧ z)⊗ (w∧ y)), and H((x∧w)⊗ (y ∧ z))
in order to show that (x ∧ y ∧ z)⊗w is in the image.
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1. Exercise (4 points).
Let M be a smooth manifold and T a C∞

(M)−linear map

T ∶ X(M)→ C∞
(M)

Show that there exists a unique smooth 1-form α ∈ C∞
(M ;T ∗M) such that for all X ∈

X(M) and for all p ∈M the equality

(T (X))(p) = α∣p(X ∣p)

holds.
Hint: You may use without a proof that on a smooth manifold there is always a family of
smooth functions (ξi)i∈I such that (ηi ∶= ξ2i )i∈I is a partition of unity.

2. Exercise (4 points).
Let M be a smooth n−dimensional manifold and let DerM be the space of derivations onM ,
that is, of all linear maps δ ∶ C∞

(M)→ C∞
(M) which satisfy the following product rule:

∀f1, f2 ∈ C
∞
(M) ∶ δ(f1f2) = (δf1)f2 + f1(δf2).

It follows from the lecture (the results about derivations in a point p ∈M) that the map

X(M)→ DerM , X ↦ ∂X

is well-defined and it can be checked that it is even an isomorphism.
Let X,Y now be two smooth tangent vector fields on M .

a) Show that [∂X , ∂Y ] ∶= ∂X ○ ∂Y − ∂Y ○ ∂X defines a derivation on M and deduce that
there exists a unique smooth tangent vector field on M , which we denote by [X,Y ],
such that ∂[X,Y ] = [∂X , ∂Y ].

b) Show that, for any f ∈ C∞
(M), one has [X,fY ] = ∂Xf ⋅ Y + f[X,Y ].

c) Show that, if x∶U → V is a chart of M , then [
∂
∂xi
, ∂
∂xj

] = 0 for all 1 ≤ i, j ≤ n. Deduce
that, if X ∣U =X i ∂

∂xi
and Y ∣U = Y i ∂

∂xi
, then

[X,Y ]∣U
= (∂X(Y i

) − ∂Y (X
i
))

∂

∂xi
= (Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj
)
∂

∂xi
.



3. Exercise (4 points).
Let M be a compact smooth n-dimensional manifold. By definition, a one-parameter group
of diffeomorphisms on M is a smooth map ϕ ∶M ×R→M , (x, t)↦ ϕt(x), with ϕ0 = IdM
and ϕt ○ ϕs = ϕt+s for all s, t ∈ R.

a) Show that, given any one-parameter group of diffeomorphisms (ϕt)t on M , the map
X ∣x ∶=

d
dt ∣t=0(ϕt(x)) defines a smooth tangent vector field on M .

b) Prove that a one-parameter group of diffeomorphisms ϕt as above with X ∈ X(M)

as in a) necessarily has to satisfy

d

dt ∣t=s
(ϕt(x)) = dϕs(X ∣x

) =X ∣ϕs(x) .

c) Conversely, show that, given any smooth vector field X on M , there exists a unique
one-parameter group of diffeomorphisms (ϕt)t on M such that d

dt ∣t=0(ϕt(x)) =X(x)
for all x ∈M .
Hint: First construct ϕt(x) for fixed x and t close to 0 using the theorem of Picard-
Lindelöf and using b); then show that (x, t)↦ ϕt(x) can be extended to M ×R.

4. Exercise: Proof of Prop. II.4.7 (4 points).
Let N and M be smooth manifolds, and ϕ∶N → M a smooth map, p ∈ N and ξ ∈ TpN .
We equip M with a semi-Riemannian metric g, which then determines the Levi–Civita
connection on M . Let η, η̃ ∈ C∞

(N,ϕ∗TM) be two vector fields along ϕ. Show that

∂ξ(g(η, η̃)) = g(∇ξη, η̃(p)) + g(η(p),∇ξη̃) .
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1. Exercise (4 points).
We define the hyperbolic plane as

H ∶= {x + iy∣x ∈ R, y ∈ R>0}

endowed with the metric ghyp ∶= 1
y2 g

eukl at z = x + iy.

a) Compute the Christoffel symbols with respect to the chart given by the identity
H→ H ⊂ R2.

b) Compute explicitly the parallel transport Pct,0,1 ∶ T(0,1)H → T(t,1)H along the curve
ct ∶ [0,1]→ H with ct(s) ∶= (st,1).

c) Let x0 ∈ R and a ∈ R/{0}. Show that γ ∶ R→ H, t↦ (x0, eat) satisfies ∇

dt γ̇(t) = 0.

2. Exercise (4 points).
We consider S2 ∶= {p ∈ R3 ∣ ∥p∥ = 1} with the metric induced from R3.

a) We consider the following local parametrization

ψ ∶ (0,2π) × (0, π)→ S2, (ϕ, θ)↦ (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))

whose inverse defines so-called spherical polar coordinates. We also write x1 = φ and
x2 = θ. Calculate the associated coordinate vector fields, the coefficients gij of the
metric and the Christoffel symbols Γkij.

b) For θ ∈ (0, π) we define c∶ [0,2π] → S2, c(t) ∶= (sin(θ) cos(t), sin(θ) sin(t), cos(θ)),
p ∶= c(0). Compute the parallel transport Pc,0,2π ∶TpS2 → TpS2, so Pc,0,2π ∈ End(TpS2).

3. Exercise: Levi–Civita connection for submanifolds (4 points).
Assume N,K ∈ N0. Let M be a semi-Riemannian submanifold of RN,K = (RN+K , ⟨ ⋅ , ⋅ ⟩N,K)
where ⟨ ⋅ , ⋅ ⟩N,K was defined in Exercise 1 of Sheet no. 1. We write ι∶M → RN+K for the
inclusion. Then for p ∈M we get an embedding dpι∶TpM → RN,K which we use to identify
TpM with its image in RN,K .

a) Show that there is a well-defined linear map

πtan
p ∶RN,K → TpM

that is the identity on TpM and such that

ker(πtan
p ) = {X ∈ RN,K ∣ ⟨X,Y ⟩N,K = 0∀Y ∈ TpM} .



Now let X ∈ TpM and let Y ∈ X(M) be given. You may assume in this exercise that there
is a smooth vector field Ỹ ∈ X(RN+K), Ỹ = (Ỹ 1, . . . , Ỹ N+K)∶RN,K → RN,K such that

Ỹ ∣M = Y .

Let ∂X Ỹ be defined componentwise, i.e. let ∂X Ỹ = (∂X Ỹ 1 . . . , ∂X Ỹ N+K). We define
DX Ỹ ∶= πtan

p (∂X Ỹ ). Prove the following:

b) DX Ỹ does not depend on how one extends Y to Ỹ . Furthermore prove that DX Ỹ
is local in the sense, that for a neighborhood U ⊂○ RN,K of p, the term DX Ỹ only
depends on X and Y ∣U∩M .

c) Show that DX Ỹ satisfies the properties

• (ii) linearity in Ỹ

• (iv) product rule

• (v) metric compatibility

in the definition of the Levi–Civita connection in the lecture from Nov 10th given
by M. Ludewig.

d) Let X̃ ∶RN,K → RN,K be a smooth extension of X with ∀q∈M ∶ X̃ ∣q ∈ TqM . Show

DX Ỹ −DY ∣pX̃ = [X̃, Ỹ ]∣p .

e) Conclude that DX Ỹ = (∇XY )∣p.
As defined on Nov 10th, ∇ denotes the Levi–Civita connection of the semi-Riemannian
manifold M in this formula.

4. Exercise (4 points).
Let M be a smooth, not necessarily compact, manifold. Given a 1-parameter group of
diffeomorphisms ϕ ∶ M × R → M , (x, t) ↦ ϕt(x) on M , let X be the associated tangent
vector field on M as in Exercise no. 3 of sheet 5. Show that, for any smooth tangent vector
field Y on M and point p ∈M it is

d

dt ∣t=0
((ϕt)∗Y ) ∣p = −[X,Y ]∣p,

where, for any diffeomorphism ψ ∶M →M , the term ψ∗Y denotes the pushforward tangent
vector field of Y defined by ψ∗Y ∶= dψ ○ Y ○ ψ−1.
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1. Exercise (4 points).
We have already seen that

Hn ∶= {X ∈ Rn,1∣⟨X,X⟩ = −1,Xn+1 > 0}

is a semi-Riemannian submanifold of Rn,1. The induced Riemannian metric on Hn is called
the hyperbolic metric ghyp.

a) Let f ∶ Rn,1 → Rn,1 be a linear map. Show that f(e1), . . . , f(en+1) is a generali-
zed o.n.b. iff f is an isometry. Show that f(Hn) = Hn if f is an isometry with
⟨en+1, f(en+1)⟩n,1 < 0.

b) Let p, q ∈ Hn, p ≠ q. Construct an isometry f ∶ Rn,1 → Rn,1 such that Fix(f) =
span{p, q}. Conclude that f ∣Hn defines an isometry Hn → Hn.

c) Define ṽ ∶= q + ⟨p, q⟩n,1 ⋅ p and v ∶= ṽ/
√

⟨ṽ, ṽ⟩n,1. Show that p, v is a generalized
orthonormal basis of span{p, q}. For t ∈ R we define γp,v(t) ∶= cosh(t)p + sinh(t)v.
Conclude that the image of γp,v is Hn ∩ span{p, q}.

d) Show that γp,v is a geodesic. (Hint: Prop. 6.14 of the lecture can be helpful). Let γ
be a geodesic in Hn. Show that γ is either a constant or a reparametrisation of a
γp,v as above.

2. Exercise (4 points).
Let F ∶M → N be a smooth map between smooth manifolds M and N . Let X,Y (resp.
X̃, Ỹ ) be (smooth) vector fields on M (resp. N). We say that X is F -related to X̃ if
dF ○X = X̃ ○ F holds on M .
Show that, if X is F -related to X̃ and Y is F -related to Ỹ , then [X,Y ] is F -related to
[X̃, Ỹ ].

3. Exercise (4 points).
Let (M,g) be a semi-Riemannian manifold with Levi-Civita connection ∇.

i) Show that there exists a unique family of R−bilinear operators

∇(r,s) ∶ X(M) × Γ(T r,s(M))→ Γ(T r,s(M)), where r, s ∈ N0,

satisfying the following properties:

a) ∇(0,0)X f = ∂Xf,
b) ∇(1,0)X Y = ∇XY,

c) (∇(0,1)X ω) (Y ) = ∂X(ω(Y )) − ω(∇XY ),



d) ∇(r+r
′,s+s′)

X (T ⊗ T ′) = (∇(r,s)X T)⊗ T ′ + T ⊗ (∇(r
′,s′)

X T ′) .

Hint: Show first that ∇(r,s) is a local operator and then construct it chartwise. Then
check that on the intersection of the domains of two charts, the covariant derivations
defined by the two charts coincide.

Bonus: Show formally that this family of connections is C∞−linear in the first
argument:

∇(r,s)fX T = f ⋅ ∇(r,s)X T.

ii) Consider some tensor field T ∈ Γ(T 0,k(M)) with k ∈ N. Show that for vector fields
X1, . . . ,Xk ∈ X(M) one has the formula

(∇(0,k)X T) (X1, . . . ,Xk) = ∂X (T (X1, . . . ,Xk))

−
k

∑
i=1

T (X1, . . . ,Xi−1,∇XXi,Xi+1, . . . ,Xk).

4. Exercise (4 points).
Let (M,g) be a smooth compact Riemannian manifold. For c ∈ R>0 show that ScM ∶=
{X ∈ TM ∣ g(X,X) = c2} is compact. Then prove that every maximal geodesic of (M,g)
is defined on all of R.
Hint: recall what is known for maximally defined solutions of first order ODEs satisfying
the Picard-Lindelöf assumptions on an open subsets of Rn.
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1. Exercise (4 points).
Let (M1, g1), (M2, g2) be two Riemannian manifolds with the induced Levi-Civita connec-
tions ∇1,∇2. We identify (as in Exercise sheet no. 3, Exercise 1)

T(p,q)(M1 ×M2) ≅ TpM1 × TqM2

and define the product metric g1 ⊕ g2 on M1 ×M2 by

g1 ⊕ g2 ((v1,w1), (v2,w2)) = g1(v1, v2) + g2(w1,w2).

For vector fields Xi ∈ X(Mi) where i = 1,2 we define X1⊕X2 ∈ X(M1×M2) by the formula

(X1 ⊕X2)∣(p,q) = (X1∣p
,0∣q) + (0∣p,X2∣q

) .

a) Construct a vector X ∈ X(R2) that cannot be written as X = X1 ⊕X2 for vectors
fields Xi ∈ X(R).

b) Let X = X1 ⊕ X2 and Y = Y1 ⊕ Y2 be vector fields on M1 ×M2. Show that the
Levi-Civita connection ∇ of (M1 ×M2, g1 ⊕ g2) satisfies

∇YX = ∇1
X1
Y1 +∇

2
X2
Y2.

c) Let c1, c2 be geodesics on M1 respectively M2. Conclude, that c(t) = (c1(t), c2(t)) is
a geodesic on M1 ×M2.

2. Exercise (4 points).
Consider the hyperbolic plane (H, ghyp), where

H = {x + iy ∈ C ∣ x ∈ R and y > 0}

with metric given by ghypx+iy =
1

y2
geucl. Let r > 0, a ∈ R. Show that the half-circles

Cr,a = {z ∈ H ∣ ∣z − a∣ = r}

are (up to reparametrisation) geodesics of the hyperbolic plane.
A way to solve this is as follows. First show that one can reduce to the case (r, a) = (1,0).
Then find a Möbius transformation ΨA∶ z ↦

az+b
cz+d where A = ( a b

c d ) ∈ SL(2;R), with ΨA(i) =
i and ΨA(0) = −1. Conclude the statement by application of ΨA to the geodesic γ(t) = iet.



3. Exercise: Models of the hyperbolic plane (4 points).
In this Exercise we want to identify three models of the hyperbolic plane.

• The hyperboloid model

H2 = {(x, y, z) ∈ R3 ∣ x2 + y2 − z2 = −1 and z > 0}

equipped with the induced metric from R2,1 (as in Sheet no. 7, Exercise 1).

• The Poincaré half-plane model

H = {x + iy ∈ C ∣ y > 0},

with the Riemannian metric gHx+iy =
1
y2 g

eucl.

• The Poincaré disk model

D = {x + iy ∈ C ∣ x2 + y2 < 1},

equipped with the metric gDx+iy = (
2

(1−(x2
+y2))
)
2
geucl.

a) We define a sterographic projection f ∶H2 → D by the following procedure: Every
point p ∈ H2 is send to the intersection point of the connecting straight line of p and
the point (0,0,−1) with the x − y-plane. Show that f is an isometry.

b) Show that the map

h ∶ H→ D, z ↦
z − i

z + i

is an isometry.

4. Exercise (4 points).
Let M and N be semi-Riemannian manifolds of the same dimension. Assume that N is
connected.

a) Let f1, f2∶N → M be two isometries. Assume there exists a point p ∈ N such that
f1(p) = f2(p) and dpf1 = dpf2 holds. Show that the two isometries coincide.

b) Let f ∶M →M be an isometry. Show that the fix point set Fix(f) = {p ∈M ∣ f(p) = p}
is a submanifold1 of M .
Hint: Use the exponential function of M .

1A subset N ⊂ Mm of a smooth manifold M is a submanifold if for every point p ∈ N there exists a
chart x∶U → V around the point p such that x(U ∩N) is a submanifold of Rm. Note that this definition
does not exclude that different connected components might be of different dimension.
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1. Exercise (4 points).
Let (Mn, g) be a Riemannian manifold and x∶U → V be a chart of M . Define

Rl
ijk = dxl (R(

∂

∂xi
,
∂

∂xj
) ∂

∂xk
)

the components of the Riemannian curvature tensor with respect to the chart x. Show that
in these coordinate the representation of the curvature tensor in terms of the Christoffel
symbols is given by:

Rl
ijk =

∂Γljk
∂xi

− ∂Γlik
∂xj

+
n

∑
m=1
(ΓlmiΓmkj − ΓlmjΓ

m
ki) .

2. Exercise (4 points).
Consider the sphere Sn ⊂ Rn+1 with induced Riemannian metric gSn . Let {ei}i ⊂ Rn+1 be
the standard orthonormal basis and define the vector fields Xi ∈ X(Rn+1)

(Xi)∣p = ei − ⟨ei,p⟩p for all p ∈ Rn+1

In this exercise we want to compute the Riemannian curvature tensor of the standard
metric of the sphere. We proceed as follows:

a) Show that Xi∣Sn ∈ X(S
n).

b) Recall that the Levi-Civita connection on Sn is given by (∇XY )∣p = πtan
p (∂X Ỹ ) for

X ∈ TpM and Y ∈ X(Sn) with an extension Ỹ ∈ X(Rn+1) and πtan
p is the orthogonal

projection Rn+1 → Tp Sn. Show:

(∇Xj
Xk)∣p = −⟨ek,p⟩Xj ∣p

c) Show for i, j, k ≥ 2: (R(Xi,Xj)Xk)∣e1 = −δikej + δjkei.

d) Show that for all points p, q ∈ Sn there exists a A ∈ SO(n + 1) such that Ap = q holds.
Conclude that the full Riemannian curvature of the standard sphere is given by:

gSn(R(X,Y )Z,T ) = gSn(Y,Z)gSn(X,T ) − gSn(X,Z)gSn(Y,T ).

3. Exercise (4 points).
Let (M,g) be a Riemannian manifold and p ∈ M a point in M. Let R̂ be a curvature
tensor for TpM , i.e. a tensor R̂ ∈ TpM ⊗ (T ∗

pM)⊗3, which satisfies the following identities:

R̂(X1,X2,X3) = −R̂(X2,X1,X3)
gp(R̂(X1,X2,X3),X4) = −gp(R̂(X1,X2,X4),X3)
R̂(X1,X2,X3) + R̂(X2,X3,X1) + R̂(X3,X1,X2) = 0



for all X1,X2,X3,X4 ∈ TpM . We take a chart x∶U → V with x(p) = 0 and construct a
Riemannian metric

gij(x) = δij −
1

3
∑
α,β

R̂iαβjx
αxβ

on the chart neighborhood U . Show that Rp = R̂ holds.

4. Exercise (4 points).
Let (M,g) be a Riemannian manifold and f ∶M → R be a smooth function. We define
gradient vector field of f by

g(grad f,X) =X(f)

for all X ∈ X(M). Moreover we define the Hessian of f by

Hess(f)(X,Y ) = (∇df)(X,Y )

for all X,Y ∈ X(M).

a) Show that the gradient is a well-defined smooth vector field on M .

b) Let x∶U → V be a chart. Show the local representation of the gradient of f :

grad f ∣U =∑
i,j

gij
∂f

∂xi
∂

∂xj

If (ei) is a generalized orthonormal basis of TpM with gp(ei, ej) = εiδij, then show

grad f ∣p =∑
i

εi∂eif ⋅ ei

c) Show that the Hessian of f is a well-defined (0,2) tensor on M . Does it depend on g?

d) Show that the Hessian is given by Hess(f) = ∂X(∂Y (f))−(∇XY )(f) and that Hess(f)
is symmetric.
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1. Exercise: Polar normal coordinates (4 points).
Let (M2, g) be a 2-dimensional Riemannian manifold. Let p ∈M be a point and choose
an ε > 0 such that the exponential map expp∶Bε(0) → expp(Bε(0)) is a diffeomorphism.
Denote by x = (x1, x2) the normal coordinates at p and consider the induced Polar normal
coordinates (r,ϕ) via the identification TpM ≅ R2 with euclidean space.

a) Show that we have the following identification of the induced coordinate vector fields:

∂

∂r
= cos(ϕ) ∂

∂x1
+ sin(ϕ) ∂

∂x2

∂

∂ϕ
= −r sin(ϕ) ∂

∂x1
+ r cos(ϕ) ∂

∂x2

b) Determine the coefficients of the metric in Polar normal coordinates grr, grϕ, gϕϕ in
terms of the metric gij with respect to normal coordinates.

c) Let (E1,E2) be an orthonormal basis of (TpM,gp). Consider the closed curve γr(t) =
expp (r cos(t)E1 + r sin(t)E2) on M for t ∈ [0,2π] and a radius r < ε. Show that the
sectional curvature Kp of (M,g) at p can be computed as follows

Kp =
3

π
lim
r→0

2πr −L[γr]
r3

,

where L[γr] is the length of the curve γr. Can you give a heuristic explanation of this
formula? Hint: Use the Taylor expansion of the metric in normal coordinates and
express it then in Polar normal coordinates.

2. Exercise: Bianchi identities (4 points).
Let α ∈ Ω1(M) be a 1-form and β ∈ Ω2(M) be a 2-form on a Riemannian manifold (M,g).
Let X1,X2,X3,X4 ∈ X(M) be vector fields on M . Recall the expressions of the Cartan
differential:

dα(X1,X2) =X1(α(X2)) −X2(α(X1)) − α([X1,X2]),
dβ(X1,X2,X3) =∑

σ

Xσ(1)(β(Xσ(2),Xσ(3))) − β([Xσ(1),Xσ(2)],Xσ(3)),

where the sum in the second formula runs over all cyclic permutations of the set {1,2,3}.

a) Show:

dα(X1,X2) = (∇X1α)(X2) − (∇X2α)(X1)

b) Use ddα = 0 to deduce the first Bianchi identity:

R(X1,X2)X3 +R(X2,X3)X1 +R(X3,X1)X2 = 0



c) Let X ∈ X(M) be a fixed vector field. Define α̃(X1) = α(∇X1X) and deduce, by using
ddα̃ = 0, the second Bianchi identity:

(∇X1R)(X2,X3) + (∇X2R)(X3,X1) + (∇X3R)(X1,X2) = 0

3. Exercise (4 points).
Let (Mn, g) be a Riemannian manifold. Denote by R the Riemannian curvature tensor
as a (1,3)-tensor. Let X,Y,Z,U,W ∈ X(M) be vector fields on M , then define

R(0,4)(X,Y,Z,W ) = g(R(X,Y )Z,W )
g(RΛ2(X ∧ Y ), Z ∧W ) = R(X,Y,Z,W )

the associated (0,4)-tensor and curvature endomorphism.

a) Let {ei}i ⊂ TpM be an orthonormal basis of g. Show that by

gp(ei ∧ ej, ek ∧ el) = δikδjl

for i < j and k < l we obtain a non-degenerated bilinearform on TpM , which depends
smoothly on p.

b) Show that R(0,4) is a well-defined (0,4)-tensor on M and RΛ2
is a well-defined map

Λ2TpM → Λ2TpM , which depends smoothly on p.

c) Show that we have the following identities:

(∇XR
(0,4))(Y,Z,U,W ) = −(∇XR

(0,4))(Z,Y,U,W )
= (∇XR

(0,4))(U,W,Y,Z) = −(∇XR
(0,4))(Y,Z,W,U)

d) Let T ∈ Γ(T (0,s)M) be a (0, s)-tensor for s ≥ 1. We define the divergence of T by

div(T )(X1, . . . ,Xs−1) ∶=
n

∑
j=1

(∇ejT )(ej,X1, . . . ,Xs−1),

where {ej}j is an orthonormal basis of TpM and X1, . . . ,Xs−1 ∈ TpM . Show:

div(ric) = 1

2
d scal .

Hint: Use the second Bianchi identity for the Riemannian curvature tensor.

4. Exercise: Schur’s Lemma (4 points).
Let (Mn, g) be a Riemannian manifold.

a) Assume n ≥ 2 and the sectional curvature Kp only depends on the point p. Then
Riemannian curvature tensor is of the form

g(R(X,Y )Z,W ) = κ ⋅ (g(X,Z)g(Y,W ) − g(Y,Z)g(X,W ))

where κ∶M → R is a smooth function.

b) Assume n ≥ 3 and the Riemannian curvature tensor is of the form above. Show that
ric = (n−1)κg holds and that in this case that the function κ is locally constant. Hint:
Use Exercise 3, d).
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1. Exercise (4 points).
Let (M,g) be a semi-Riemannian manifold and N ⊂M be an open subset. Assume that
N is geodesically complete1 and M is connected. Show that N =M holds. Hint: Consider
a point in the boundary N̄ ∖N .

2. Exercise (4 points).
Let N ⊂M be a semi-Riemannian submanifold of the semi-Riemannian manifold (M,g).
We say that N is totally geodesic if the second fundamental form I⃗I ≡ 0 vanishes.

a) Show that N is totally geodesic iff every geodesic of N is also a geodesic of M .

b) Assume now that N is geodesically complete. Show that N is totally geodesic iff every
geodesic γ∶ I →M , of M with γ̇(0) ∈ TN is contained in N .

c) Do we need the assumption of geodesic completeness in part b) to conclude the state-
ment?

3. Exercise (4 points).
Let (M̄, ḡ) be a semi-Riemannian manifold and M be submanifold of dimension n =
dim(M) = dim(M̄) − 1. Assume that there exists a map into the normal bundle ν∶M →
NM , such that g(ν, ν) = ε ∈ {−1,+1} holds. Denote by g the induced Riemannian metric
on M .

a) Show that there exists a unique bundle map W ∈ Γ(End(TM)) with the property

g(W (X), Y ) = ḡ(I⃗I(X,Y ), ν)

for all X,Y ∈ TpM and p ∈M . In particular, the endomorphism W ∣p∶TpM → TpM is

self-adjoint. We call W the Weingarten map of the embedding (M,g)↪ (M̄, ḡ).

b) Show that W (X) = −∇̄Xν holds for all X ∈ TM .

c) Assume that M̄ is Riemannian and n = dim(M) ≥ 3. Moreover the metric on M̄
is assumed to be flat, i.e. R̄ ≡ 0. Show that for any point p ∈ M there is a plane
E ⊂ TpM with K(E) ≥ 0. Hint: Consider planes E = span(ξi, ξj) which are spanned
by an orthonormal basis ξ1, . . . , ξn of eigenvectors of W and use the Gauß formula.

1A semi-Riemannian manifold N is geodesically complete if the exponential map is defined on the full
tangent bundle TN



4. Exercise (4 points).
Let (M̄, ḡ) be a flat semi-Riemannian manifold and M be a semi-Riemannian subma-
nifold of M̄ with dimension m and induced metric g. Let (b1, . . . , bm) be a generalized
orthonormal basis of TpM with the condition g(bi, bj) = δij εi, εi ∈ {−1,1}. We define the
mean curvature vector field by H⃗p ∶= ∑m

i=1 εi I⃗I(bi, bi).

a) Show that H⃗p is well-defined.

b) Show that

Ric(X,Y ) = ḡ(H⃗p, I⃗I(X,Y )) −
m

∑
i=1

εi ḡ(I⃗I(bi,X), I⃗I(bi, Y )).

holds for all X,Y ∈ TpM

c) Let M be of dimension m − 1 and assume that there exists a map into the normal
bundle ν∶M → NM , such that g(ν, ν) = ε ∈ {±1} holds with associated Weingarten
map W (defined in Exercise 3). Show that:

ḡ(ν, ν) ⋅ scal = (TrW )2 −Tr(W 2).
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1. Exercise (4 points).
Let (M2, g) be a two-dimensional Riemannian submanifold of R3. We call M a minimal
surface if the mean curvature of M in R3 vanishes.

a) Show that a minimal surface has non-positive sectional curvature, and if the sectional
curvature is 0 in p ∈M , then the fundamental form vanishes in p.

b) Consider the catenoid

Φ1∶R2 → R3

(x, y)↦
⎛
⎜
⎝

α cosh(x) cos(y)
α cosh(x) sin(y)

sinh(x)

⎞
⎟
⎠

and the helicoid

Φ2∶R2 → R3

(x, y)↦
⎛
⎜
⎝

x cos(y)
x sin(y)
βy

⎞
⎟
⎠

with constants α,β ∈ R. Compute the induced metrics g1, g2 on R2 and the Weingarten
maps. Show that the catenoid and the helicoid are minimal surfaces in R3.

c) Compute the sectional curvatures of both surfaces. Does there exists an isometry
φ∶ (R2, g1)→ (R2, g2)?

d) Show that there does not exists an isometry φ̄∶R3 → R3 such that φ̄(image(Φ1)) =
image(Φ2) holds.

2. Exercise (4 points).
Let (Mn, g) be a Riemannian manifold with non-positive sectional curvature, i.e. K ≤ 0.
We denote by J a Jacobi field along a geodesic c of (M,g).

a) Show that g(J, ∇2

dt2J) is a non-negative function.

b) Show that d2

dt2 (g(J, J)) is a non-negative function.

c) Conclude from the previous statements that the Jacobi field vanishes identically or
has at most one point where it vanishes.



3. Exercise (4 points).
Let (M,g) be a semi-Riemannian manifold and J be a Jacobi field along a geodesic
c∶ I = [a, b] →M . Show that there exists a geodesic variation c●∶ (−ε, ε) × I →M of c such
that J = d

ds ∣s=0cs holds.
Hint: For some t0 ∈ [a, b] choose a curve γ ∶ (−ε, ε) → M with γ(0) = c(t0) and γ̇(0) =
J(t0). Find a vector field X along γ such that (s, t)↦ cs(t) = expγ(s)(tX(s)) is a suitable
geodesic variation.

4. Exercise (4 points).
Let (M,g) be a semi-Riemannian manifold.

a) Recall that we denote the parallel transport along a curve γ by Pγ. Let F ∶R2 → M
be a smooth map and denote by γt the curve in M which is given by

γt(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F (4st,0) s ∈ [0, 14]
F (t, t(4s − 1)) s ∈ [14 ,

1
2]

F (t(3 − 4s), t) s ∈ [12 ,
3
4]

F (0, t(4 − 4s)) s ∈ [34 ,1],

i.e. the piecewise smooth curve which gives the image of the closed polygonal chain
with corner points (0,0), (t,0), (t, t) and (0, t). Show that

lim
t→0

Pγtv − v
t2

= R( ∂F
∂x2

(0), ∂F
∂x2

(0)) v

holds for all v ∈ TF (0,0)M .
Hint: Use the following statement from the lecture (Lemma V.4.2): Let α∶R2 →M be
a smooth map and X a vector field along α such that ∇∂xX = ∇

∂yX holds, then we have

∇
∂x

∇
∂x
X − ∇

∂y

∇
∂y
X = R(∂α

∂x
,
∂α

∂y
)X.

b) If (M,g) is flat, then for every point p ∈ M and vector v ∈ TpM , there exists an
open neighbourhood of p given by U ⊂ M and a section X ∶U → TM of the tangent
bundle TM , which is parallel, i.e. ∇X = 0 on U , and satisfies Xp = v. Construct a
counterexample in the non-flat case for the previous statement.
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1. Exercise (4 points).
Let M be a compact surface (without boundary) in R3. Let Br(0) be the closed ball of
radius r around 0 in R3, and let Sr(0) = ∂Br(0) be its boundary.

a) Show that the infimum R ∶= inf{r > 0 ∣M ⊂ Br(0)} > 0 is attained, and conclude that
M ∩ SR(0) is not empty.

b) Show that TpM is the orthogonal complement of p for any p ∈ M ∩ SR(0). Show for
any such p ∈M that the symmetric bilinear form

TpM × TpM → R, (X,Y )↦ ⟨ 1
Rp, I⃗I(X,Y )⟩

is negative definit.

c) Are there compact minimal surfaces M in R3? Justify your answer.

2. Exercise (4 points).
Let (M,g) be a connected, non-compact, geodesically complete Riemannian manifold and
p ∈M be a point. You may use the facts that under these conditions (M,d) is a complete
metric space and that for any p, q ∈M there is a shortest curve from p to q.

a) Show the existence of a sequence points {pi}i∈N in M with d(p, pi)→∞ for i→∞.

b) Conclude the existence of a geodesic ray1 γ∶ [0,∞)→M with γ(0) = p.
Hint: Consider a length minimizing geodesic γi∶ [0, li]→M with γi(0) = p and γi(li) =
pi. Use the fact that ∥γ̇i(0)∥ = 1 to conclude that there exists convergent subsequence
γ̇ij(0)→X ∈ TpM . Consider then γ(t) = expp(tX) and show d(p, γ(t)) = t.

3. Exercise (4 points).
Let (M,g) be a connected, geodesically complete Riemannian manifold and N ⊂M be a
closed submanifold.2 We fix a point q ∈M∖N . We denote by d(x,N) ∶= inf{d(x, y) ∣ y ∈ N}
the minimal distance from x to the submanifold N .

a) Show that there exists a point p ∈ N with d(q, p) = d(q,N). Do we need the assumption
that N is closed?

b) Show the existence of a geodesic γ, which connects p and q with length given by
L(γ) = d(q, p).

c) Conclude with the first variation of the energy that the curve γ hits N in an orthogonal
way.

1A geodesic ray γ∶ [0,∞) → M is a geodesic such that for all compact subsets K ⊂ M there exists a
time T > 0 such that γ(T ) /∈K holds.

2You may use the facts that under these conditions (M,d) is a complete metric space and that for
any p, q ∈M there is a shortest curve from p to q.



4. Exercise (4 points).
Let M be a smooth manifold and G be a group equipped with the discrete topology.
Moreover we have a continuous group action

R∶M ×G→M

(p, g)↦ R(p, g),

i.e. R satisfies R(p, gh) = R(R(p, g), h) for all p ∈ M and g, h ∈ G. We denote by p ⋅G ∶=
{R(p, g) ∣ g ∈ G} the orbit of p along the group action and we denote by M/G ∶= {p ⋅G ∣ p ∈
M} the quotient space of the group action. The canonical projection π∶M → M/G,p ↦
π(p) = p ⋅G induces a topology on the quotient M/G, i.e. a subset U ⊂ M/G is open iff
π−1(U) ⊂M is open.

a) Show that the right multiplication maps Rg ∶M →M,p↦ R(p, g) is a homeomorphism
for any g ∈ G. Are these maps also diffeomorphisms?

Now we assume that the group action R is free and properly discontinuous. Here we refer
to an action R as free if for any g ∈ G∖ {e} the right multiplication maps Rg has no fixed
point. An action R is properly discontinuous if for all points p, q ∈ M there exist open
neighbourhoods Up, Vq of p respectively q such that Rg(Up) ∩ Vq = ∅ holds for all g ∈ G
with the condition R(p, g) /= q.

b) Show that the quotient space M/G is Hausdorff.

c) Show that the canonical projection π∶M → M/G is a covering map, i.e. for all
points P ∈M/G there exists an open neighbourhood U of P and a homeomorphism
ΦU ∶π−1(U)→ U ×G such that Φ ○ pr1 = π holds.

d) (Bonus part) Assume additionally that Rg is smooth for any g ∈ G. Show then that
the quotient space M/G is a smooth manifold and the canonical projection is a local
diffeomorphism.
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1. Exercise (4 points).
Let ϕ∶ (M,g)→ (N,h) be a smooth map between connected manifolds and g = ϕ∗h is the
pullback of the metric h.

a) If ϕ is a covering map, then show that (M,g) is complete iff (N,h) is complete.

b) Assume that ϕ is a local diffeomorphism and an isometry. Show that if (M,g) is
complete, then the map ϕ is a covering map.

2. Exercise (4 points).
Let (Mn≥2, g) be connected, complete Riemannian manifold with constant sectional cur-
vature. Assume moreover that M is simply-connected. Show

(M,g) is isometric to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hn if K = −1,

Rn if K = 0,

Sn if K = 1.

3. Exercise (4 points).
Let ϕ∶ (M,g)→ (N,h) be a surjective submersion between connected complete Riemanni-
an manifolds. We call ϕ a Riemannian submersion if the map dpϕ induces an isomorphism
HpM ∶= (ker(dpϕ))⊥ → Tϕ(p)N for each p ∈M . We call HM ∶= ⋃p∈M HpM ⊂ TM the hori-
zontal subbundle and its elements horizontal.

a) Let γ ∶ I → N be a smooth curve, I some interval. Show that there exists a horizontal
lift γ̃ ∶ I →M , i.e. a curve γ̃ satisfying ˙̃γ(t) ∈Hγ̃(t)M and ϕ ○ γ̃ = γ. Also show for any
curve τ ∶ [a, b]→ N that L(ϕ ○ τ) ≤ L(τ).

b) Show: if γ is a geodesic, then its horizontal lift γ̃ is also a geodesic. Hint: use the fact
that γ locally minimizes length to show that γ̃ also minimizes length locally.

c) Show: if a horizontal curve τ ∶ I →M is geodesic, then ϕ○ τ ∶ I → N is also a geodesic.

d) Let γ be a geodesic in M . Show that if γ̇(0) lies in Hγ(t)M then we have γ̇(t) ∈ HM
for all t ∈ I.

4. Exercise (4 points).
Let (Mn, g) be a Riemannian manifold. We assume that (M,g) is locally symmetric, i.e.
∇R = 0 holds. In this exercise we want to show that this condition is equivalent to the
existence of a local isometry σp ∶ U → σ(U) with σ(p) = p and dpσ = − idTpM , defined on
open neighbourhood U ⊂M of p.



a) Let ε > 0 small enough such that the exponential function is a diffeomorphism onto

its image, i.e. expp∶Bε(0)
≃→ expp(Bε(0)) = Bε(p). We define the map

σp∶Bε(p)→ Bε(p)
γ(t)↦ γ(−t),

where we use that each point in Bε(p) can be represented by a geodesic emanating
from p. Show that σp = expp ○(− idTpM) ○ exp−1

p holds.

b) Let v ∈ Bε(0) and q = expp(v). Moreover let γ(t) = expp(tv) and γ̄(t) = γ(−t) be
curves in M . We consider the map

Ft ∶ Tγ(t)M → Tγ̄(t)M

w ↦ P γ̄0,t ○ (− idTpM) ○Pγt,0(w),

where Pca,b∶Tc(a)M → Tc(b)M denotes the parallel transport along the curve c∶ I →M

with a, b ∈ I. Show that for each Jacobi field J(t) along γ, the field J̄(t) = Ft(J(t)) is a
Jacobi field along γ̄. Conclude from the previous statement that the map σp∶Bε(p)→
Bε(p) is an isometry.

c) Let γ∶ (−ε, ε) → M be a geodesic with γ(0) = p and γ̇(0) = v. Moreover assume that
(M,g) is not nessecarily locally symmetric and all the maps σp from part a) are
isometries. Show for a parallel frame (e1(t), . . . , en(t)) along γ we have

gγ(t)(R(ei(t), ej(t)ek(t)), el(t)) = gγ(−t)(R(ei(−t), ej(−t)ek(−t)), el(−t))

and conclude that (M,g) is locally symmetric.


