## Recap Exercise Sheet

## 1. Exercise.

1.) A topological space $X$ is called locally Euclidean of dimension $n \in \mathbb{N}$, if every $x \in X$ has an open neighbourhood $U$, such that $U$ is homeomorphic to $\mathbb{R}^{n}$.
2.) A topological space $X$ satisfies the second axiom of countability, if it has a countable basis of the topology (see e.g. section 1.1 in the script on Analysis IV by Prof. Garcke).
3.) A topological space $X$ is called separable, if it contains a countable dense subset.

Let $X$ be a locally Euclidean topological space satisfying the second axiom of countability.
i) Show that $X$ can be covered by countably many neighbourhoods as in point 1.) above.
ii) Show that $X$ is separable.

## 2. Exercise.

Let $X$ be $\mathbb{R} \cup\{p\}$, where $p$ is some object not contained in $\mathbb{R}$ and define
$\mathcal{O}:=\{U \mid U$ open in $\mathbb{R}\} \cup\{(U \backslash\{0\}) \cup\{p\} \mid U$ open in $\mathbb{R}, 0 \in U\} \cup\{U \cup\{p\} \mid U$ open in $\mathbb{R}, 0 \in U\}$.
Show that $\mathcal{O}$ is a topology on $X$ and prove that it is locally Euclidean, but not Hausdorff.

## 3. Exercise.

Let $X$ be a topological space, $x \in X$. The connected component of $x$ is defined as the union of all connected subsets of $X$ containing $x$. Show that:
i) The connected component of $x$ is connected.
ii) The connected component of $x$ is closed in $X$.

## 4. Exercise.

Let $X$ be a Hausdorff space such that every point in $X$ has a compact neighbourhood. Show the following property (called local compactness): For any $x \in X$ and any neighbourhood $U$ of $x$ there is a compact neighbourhood of $x$ contained in $U$.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, October 24

## Exercise Sheet no. 1

1. Exercise (4 points).
i) Let $M:=S^{n}:=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}$ be the $n$-sphere endowed with the topology induced by $\mathbb{R}^{n+1}$. Construct for any point $p \in S^{n}$ an open neighbourhood $V$ of $p$ in $S^{n}$ and a homeomorphism from $V$ to $\mathbb{R}^{n}$.
ii) On $\mathbb{R}^{n+k}$ define

$$
\left\langle\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n+k}
\end{array}\right),\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n+k}
\end{array}\right)\right)_{n, k}:=\sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=n+1}^{n+k} x_{i} y_{i} .
$$

Show for all $r \in \mathbb{R} \backslash\{0\}$, that $M:=\left\{x \mid\langle x, x\rangle_{n, k}=r\right\}$ is a submanifold of $\mathbb{R}^{n+k}$.
2. Exercise (4 points).

On the set $M$ we define the metric:

$$
d: M \times M \rightarrow \mathbb{R}_{\geq 0}, \quad(x, y) \mapsto\left\{\begin{array}{ll}
1 & x \neq y \\
0 & x=y
\end{array},\right.
$$

inducing the discrete topology. Show that $M$ is a Hausdorff space and locally Euclidean of some dimension $n \in \mathbb{N}_{0}$. What number is $n$ ? Show that the topology of $M$ has a countable base, if and only if $M$ is countable.
3. Exercise (4 points).

Let $n \in \mathbb{N}$ and $\mathbb{R} \mathrm{P}^{n}$ be the set of 1 -dimensional vector subspaces of $\mathbb{R}^{n+1}$.
i) Identify $\mathbb{R P}^{n}$ with the quotient $\left(\mathbb{R}^{n+1} \backslash\{0\}\right) \backslash \sim$, where $x \sim y \Longleftrightarrow \exists \lambda \in \mathbb{R}^{\times}$s.t. $x=\lambda y$ and endow it with the quotient topology. Show that $\mathbb{R P}^{n}$ is a compact Hausdorff space satisfying the second axiom of countability.
Hint for the Hausdorff property: You may use without a proof the triangle inequality for small angles, $\alpha_{x, z} \leq \alpha_{x, y}+\alpha_{y, z}$ where $\cos \alpha_{a, b}=\frac{\langle a, b\rangle}{\|a\|\|b\|}$.
ii) Show that the maps

$$
U_{j}:=\left\{[x] \in \mathbb{R P}^{n} \mid x_{j} \neq 0\right\} \xrightarrow{\varphi_{j}} \mathbb{R}^{n},[x] \mapsto \frac{1}{x_{j}}\left(x_{1}, \ldots, \widehat{x_{j}}, \ldots, x_{n+1}\right), 1 \leq j \leq n+1,
$$

are well-defined homeomorphisms (the " $\widehat{x}_{j}$ " means omitting ", $x_{j}$,").
iii) Show that $\mathcal{A}=\left(\phi_{j}: U_{j} \rightarrow \mathbb{R}^{n}\right)_{j \in\{1,2, \ldots, n+1\}}$ is an atlas for $\mathbb{R}^{n}$.
iv) For $i, j \in\{1, \ldots, n+1\}, i \neq j$ show that $\phi_{j}\left(U_{i} \cap U_{j}\right)$ is an open subset of $\mathbb{R}^{n}$ and that

$$
\phi_{i} \circ\left(\phi_{j}\right)^{-1}: \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)
$$

is a $C^{\infty}$-diffeomorphism.
4. Exercise (4 points).

A topological space $X$ is called path-connected, if any two points of $X$ can be connected by a continuous path $\gamma:[0,1] \rightarrow X$. A topological space is called locally path-connected, if any neighbourhood of any point $x \in X$ contains a path-connected neighbourhood of $x$.
i) Show that any topological manifold is locally path-connected.
ii) Show that the connected components of a locally path-connected topological space are open and closed.
iii) Deduce that the connected components of an $n$-dimensional topological manifold are again $n$-dimensional topological manifolds.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, October 31

## Exercise Sheet no. 2

1. Exercise (4 points).

Let $k \in \mathbb{N} \cup\{0, \infty, \omega\}$.
a) Show that any $C^{k}$-atlas $\mathcal{A}$ is contained in exactly one $C^{k}$-structure $\overline{\mathcal{A}}$.

Hint: Define $\overline{\mathcal{A}}$ as the set of all charts that are $C^{k}$-compatible with all charts of $\mathcal{A}$. Then show the required properties.
b) Assume now $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ to be two $C^{k}$-atlases of $M$. Show that: $\overline{\mathcal{A}_{1}}=\overline{\mathcal{A}_{2}}$ if and only if all charts of $\mathcal{A}_{1}$ are $C^{k}$-compatible with all charts of $\mathcal{A}_{2}$.
2. Exercise (4 points).

We consider $\mathbb{R}$ with the standard topology, which is obviously a topological manifold. We consider four atlases $\mathcal{A}_{\text {std }}, \mathcal{A}_{\text {quad }}, \mathcal{A}_{\text {cub }}$, and $\mathcal{A}_{\text {unif }}$ on $\mathbb{R}$ :

$$
\begin{array}{ll}
\mathcal{A}_{\text {std }}:=\left\{\left(\operatorname{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}\right)\right\}, & \mathcal{A}_{\text {quad }}:=\left\{\left(\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}\right),\left(\mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}, x \mapsto x^{2}\right)\right\} \\
\mathcal{A}_{\text {cub }}:=\left\{\left(\mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}\right)\right\} & \mathcal{A}_{\text {unif }}:=\mathcal{A}_{\text {std }} \cup \mathcal{A}_{\text {cub }}
\end{array}
$$

a) Determine for each atlas the maximal $k$ such that it is a $C^{k}$-atlas.
b) Show that the $C^{1}$-structure defined by $\mathcal{A}_{\text {std }}$ is different from the $C^{1}$-structure defined by $\mathcal{A}_{\text {cub }}$. Are there two atlases among the four ones defined above, that define the same $C^{1}$-structure?
c) Construct a diffeomorphism $\left(\mathbb{R}, \mathcal{A}_{\text {std }}\right) \rightarrow\left(\mathbb{R}, \mathcal{A}_{\text {cub }}\right)$.
3. Exercise (4 points).

We define a symmetric bilinear form $g^{(1,1)}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by setting

$$
g^{(1,1)}\left(\binom{x}{y},\binom{x^{\prime}}{y^{\prime}}\right)=x x^{\prime}-y y^{\prime} \quad \text { for all } \quad\binom{x}{y},\binom{x^{\prime}}{y^{\prime}} \in \mathbb{R}^{2}
$$

- Show that $\left(b_{1}, b_{2}\right)$ is a generalized orthonormal basis for $g^{(1,1)}$ if and only if there exists a $t \in \mathbb{R}$ and $\delta, \epsilon \in\{1,-1\}$ such that

$$
b_{1}=\delta \cdot\binom{\cosh t}{\sinh t} \quad \text { and } \quad b_{2}=\epsilon \cdot\binom{\sinh t}{\cosh t} .
$$

- Determine the number of connected components of $O(1,1):=\operatorname{Isom}_{\operatorname{lin}}\left(\mathbb{R}^{2}, g^{(1,1)}\right)$.

4. Exercise (4 points).

Let $\mathbb{R}_{\text {sym }}^{n \times n} \subset \mathbb{R}^{n \times n}$ denote the subspace of symmetric $n \times n$-matrices.
a) Let $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}_{\mathrm{sym}}^{n \times n}, A \mapsto A^{T} A$, with $A^{T}$ denoting matrix transposition. Show that $\mathbf{1}_{n}$ is a regular value for $f$.
Recall: Some $c$ is by definition a regular value, if the differential $d_{x} f$ has full rank for all $x \in f^{-1}(c)$.
b) Determine $\operatorname{ker}\left(d_{1_{n}} f\right)$.
c) Deduce that the orthogonal group $\mathrm{O}(n)$ is an $\frac{n(n-1)}{2}$-dimensional submanifold of $\mathbb{R}^{n^{2}} \cong \mathbb{R}^{n \times n}$.
d) Construct a chart of $\mathrm{O}(n)$ whose chart neighborhood contains $\mathbf{1}_{n}$. Hint: Consider the exponential map $\exp (A):=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}$.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 7

## Exercise Sheet no. 3

1. Exercise (4 points).

Let $M$ and $N$ be $m$-dimensional, resp. $n$-dimensional, $C^{\infty}$-manifolds with atlases

$$
\mathcal{A}^{M}:=\left\{x_{i}: U_{i} \rightarrow V_{i}\right\}_{i \in I} \text { and } \mathcal{A}^{N}:=\left\{y_{j}: U_{j}^{\prime} \rightarrow V_{j}^{\prime}\right\}_{j \in J} .
$$

Define the family

$$
\mathcal{A}^{M \times N}:=\left\{z_{i, j}: U_{i} \times U_{j}^{\prime} \rightarrow V_{i} \times V_{j}^{\prime}\right\}_{(i, j) \in I \times J} \text { with } z_{i, j}(p, q):=(x(p), y(q)) .
$$

a) Show that $\mathcal{A}^{M \times N}$ is a $C^{\infty}$-atlas on $M \times N$ with the product topology.
b) Equip $M \times N$ with the smooth structure defined by $\mathcal{A}^{M \times N}$ and show:
i) The projection $\pi^{M}: M \times N \rightarrow M$ is $C^{\infty}$. (And, of course, so is $\pi^{N}$.)
ii) For any smooth manifold $W$ and smooth maps $f: W \rightarrow M$ and $g: W \rightarrow N$ the map

$$
(f, g): W \rightarrow M \times N p \mapsto(f(p), g(p))
$$

is smooth again.
c) Show that

$$
T_{(p, q)}(M \times N) \rightarrow T_{p} M \times T_{q} N, \quad X \mapsto\left(d_{p} \pi^{M}(X), d_{q} \pi^{N}(X)\right)
$$

is an isomorphism of vector spaces.
2. Exercise (4 points).

Let $k \in \mathbb{N}$ and $\epsilon>0$ be given.
a) Define a diffeomorphism $F: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$ such that $F$ restricted to $\mathbb{R}^{k+1} \backslash B_{\epsilon}(0)$ is the inclusion

$$
\mathbb{R}^{k+1} \backslash B_{\epsilon}(0) \hookrightarrow \mathbb{R}^{k+1}
$$

but $F\left(\mathbb{R}^{k} \times\{0\}\right) \not \subset \mathbb{R}^{k} \times\{0\}$.
Hint: Use the graph of a function $\eta: \mathbb{R}^{k} \rightarrow[0, \epsilon / 4]$ with support in $\mathbb{R}^{k} \backslash B_{\epsilon / 2}(0)$ and use a function $\chi: \mathbb{R} \rightarrow[0,1]$ with support in $(-\epsilon / 2, \epsilon / 2)$ and some further properties.
b) Show for all $m, n \geq 1$ that the atlas $\mathcal{A}^{M \times N}$ constructed in Exercise 1 is not a $C^{\infty}$-structure.
3. Exercise (4 points).

Viewing $\mathbb{Z}^{n}$ as a subgroup of $\left(\mathbb{R}^{n},+\right)$ one obtains the quotient $T^{n}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$ (the $n$ dimensional torus) which, equipped with the quotient topology, is a topological manifold (you need not to prove this fact). Let $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ be the projection.
a) Construct a $C^{\infty}$-atlas $=\left\{x_{i}: U_{i} \rightarrow V_{i}\right\}_{i \in I}$ on $T^{n}$ such that every $p \in \mathbb{R}^{n}$ has a neighbourhood $U$ that turns the restriction $\left.\pi\right|_{U}: U \rightarrow \pi(U)$ into a diffeomorphism.
b) Show that $T^{n}$ is diffeomorphic to $\underbrace{S^{1} \times \ldots \times S^{1}}_{n \text { times }}$.
c) Consider the submanifold

$$
\mathbb{T}:=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid\left(\sqrt{x^{2}+y^{2}}-2\right)^{2}+z^{2}=1\right\}
$$

of $\mathbb{R}^{3}$ which is obtained by rotating a circle in the halfplane $\{x>0, y=0\} \subset \mathbb{R}^{3}$ around the $z$-axis (you do not have to prove this).
Show that $T^{2}$ is diffeomorphic to $\mathbb{T}$.
4. Exercise (4 points).

Let $G$ be a $C^{\infty}$-manifold together with a smooth map $m: G \times G \rightarrow G$ such that ( $G, m$ ) is a group. In particular there is a neutral element $e \in G$.
a) Calculate

$$
d_{(e, e)} m: T_{(e, e)}(G \times G)\left(\cong T_{e} G \times T_{e} G\right) \rightarrow T_{e} G .
$$

Hint: Calculate $d_{(e, e)} m(X, 0)$ and $d_{(e, e)} m(0, X)$ for $X \in T_{e} G$.
b) Let $x: U \rightarrow V$ be a chart of $G$ with $e \in U$ and $x(e)=0$. Let $U^{\prime} \subset U$ be an open neighbourhood of $e$ such that $m\left(U^{\prime} \times U^{\prime}\right) \subset U$. Denote $V^{\prime}:=x\left(U^{\prime}\right)$ and show that the differential of

$$
F: V^{\prime} \times V^{\prime} \rightarrow V,(p, q) \mapsto x\left(m\left(x^{-1}(p), x^{-1}(q)\right)\right)
$$

is surjective in a neighbourhood of $0 \in V^{\prime} \times V^{\prime}$. Hint: apply the implicit function theorem.
c) Show that there is an open neighbourhood $W$ of $e$ and a smooth map inv: $W \rightarrow G$ satisfying $m(p, \operatorname{inv}(p))=e$ for $p \in W$. Hint: Implicite function theorem.

Bonus: Show that the map inv with its property in c) can be used to prove that $G \rightarrow G$, $g \mapsto g^{-1}$ is smooth. Hint: Use $m(., g): G \rightarrow G, g \in G$ to show smoothness on $m\left(W, g^{-1}\right)$.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 14

## Exercise Sheet no. 4

1. Exercise (4 points).
i) Let $g$ be a symmetric bilinear form on a finite-dimensional vector space $V$, and let $n_{+}$, $n_{0}$ and $n_{-}$be the numbers of basis vectors $e_{1}, \ldots, e_{n_{+}+n_{0}+n_{-}}$with $g\left(e_{i}, e_{i}\right)=+1,0$ or -1 as in Sylvester's law of inertia. Calculate
$\max \{\operatorname{dim} W \mid W$ is a linear subspace of $V$ on which $g$ is positive definite $\}$
$\max \{\operatorname{dim} W \mid W$ is a linear subspace of $V$ on which $g$ is negative definite $\}$
$\max \{\operatorname{dim} W \mid W$ is a linear subspace of $V$ on which $g$ is positive semi-definite $\}$ $\max \{\operatorname{dim} W \mid W$ is a linear subspace of $V$ on which $g$ is negative semi-definite $\}$ $\max \left\{\operatorname{dim} W \mid W\right.$ is a linear subspace of $V$ with $\left.\left.g\right|_{W \times W}=0\right\}$
in terms of $n_{+}, n_{0}$ and $n_{-}$. Conclude that $n_{+}, n_{0}$ and $n_{-}$do not depend on the chosen basis.
ii) Let $B \in \mathbb{R}^{n \times n}$ be symmetric and $A \in \operatorname{GL}(n, \mathbb{R})$. Show that the numbers of positive, zero and negative eigenvalues of $A^{\top} B A$ does not depend on $A$.
2. Exercise (4 points).

Let $\mathcal{A}:=\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ be an atlas of an $m$-dimensional manifold $M$. Define for all $\alpha \in A$ the sets $U_{\alpha}^{T M}:=\bigsqcup_{p \in U_{\alpha}} T_{p} M$ and the family $\mathcal{A}^{T M}=\left\{\mathrm{d} \varphi_{\alpha}: U_{\alpha}^{T M} \rightarrow V_{\alpha} \times \mathbb{R}^{m}\right\}_{\alpha \in A}$, where for a $v \in T_{p} M$ we set $\mathrm{d} \varphi_{\alpha}(v):=\left(p, \mathrm{~d}_{p} \varphi_{\alpha}(v)\right)$.
i) Show that $T M$ carries a unique topology such that for all $\alpha \in A$ the subset $U_{\alpha}^{T M}$ is open and $\mathrm{d} \varphi_{\alpha}$ a homeomorphism.
ii) Show that $T M$ with this topology is a topological manifold and $\mathcal{A}^{T M}$ a smooth atlas on $T M$.
iii) Show that $\pi: T M \rightarrow M, T_{p} M \ni v \mapsto p$ is a smooth map of manifolds.
iv) Show that some $X: M \rightarrow T M$ is smooth in the sense of the definition given in the lecture if and only if it is smooth as a map of manifolds $M \rightarrow T M$ and $\pi \circ X=\mathrm{id}_{M}$.
3. Exercise (4 points).

Let $W:=\left\{p \in \mathbb{R}^{3} \mid \max \left\{\left|p_{1}\right|,\left|p_{2}\right|,\left|p_{3}\right|\right\}=1\right\}$.
i) Is $W$ a submanifold of $\mathbb{R}^{3}$ ? Prove your statement.
ii) Equip $W$ with the topology induced from $\mathbb{R}^{3}$ and show the existence of a $C^{\infty}$-structure on $W$.
4. Exercise (4 points).

Let $V$ be an $n$-dimensional vector space over $\mathbb{R}$.
i) Calculate $\operatorname{dim}\left(\Lambda^{2} V\right) \otimes\left(\Lambda^{2} V\right)$ and $\operatorname{dim}\left(\Lambda^{3} V\right) \otimes V$.
ii) Show that

$$
\begin{aligned}
& H:\left(\Lambda^{2} V\right) \otimes\left(\Lambda^{2} V\right) \rightarrow\left(\Lambda^{3} V\right) \otimes V \\
& (x \wedge y) \otimes(z \wedge w) \mapsto(x \wedge y \wedge z) \otimes w-(x \wedge y \wedge w) \otimes z
\end{aligned}
$$

is well-defined.
iii) Show that $H$ is surjective and that $\operatorname{dim} \operatorname{ker}(H)=\frac{n^{2}\left(n^{2}-1\right)}{12}$.

Hint: Calculate $H((x \wedge y) \otimes(z \wedge w)), H((x \wedge z) \otimes(w \wedge y))$, and $H((x \wedge w) \otimes(y \wedge z))$ in order to show that $(x \wedge y \wedge z) \otimes w$ is in the image.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 21

## Exercise Sheet no. 5

1. Exercise (4 points).

Let $M$ be a smooth manifold and $T$ a $C^{\infty}(M)$-linear map

$$
T: \mathfrak{X}(M) \rightarrow C^{\infty}(M)
$$

Show that there exists a unique smooth 1-form $\alpha \in C^{\infty}\left(M ; T^{*} M\right)$ such that for all $X \in$ $\mathfrak{X}(M)$ and for all $p \in M$ the equality

$$
(T(X))(p)=\left.\alpha\right|_{p}\left(\left.X\right|_{p}\right)
$$

holds.
Hint: You may use without a proof that on a smooth manifold there is always a family of smooth functions $\left(\xi_{i}\right)_{i \in I}$ such that $\left(\eta_{i}:=\xi_{i}^{2}\right)_{i \in I}$ is a partition of unity.
2. Exercise (4 points).

Let M be a smooth $n$-dimensional manifold and let $\operatorname{Der}^{M}$ be the space of derivations on $M$, that is, of all linear maps $\delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ which satisfy the following product rule:

$$
\forall f_{1}, f_{2} \in C^{\infty}(M): \delta\left(f_{1} f_{2}\right)=\left(\delta f_{1}\right) f_{2}+f_{1}\left(\delta f_{2}\right)
$$

It follows from the lecture (the results about derivations in a point $p \in M$ ) that the map

$$
\mathfrak{X}(M) \rightarrow \operatorname{Der}^{M}, \quad X \mapsto \partial_{X}
$$

is well-defined and it can be checked that it is even an isomorphism.
Let $X, Y$ now be two smooth tangent vector fields on $M$.
a) Show that $\left[\partial_{X}, \partial_{Y}\right]:=\partial_{X} \circ \partial_{Y}-\partial_{Y} \circ \partial_{X}$ defines a derivation on $M$ and deduce that there exists a unique smooth tangent vector field on $M$, which we denote by [ $X, Y$ ], such that $\partial_{[X, Y]}=\left[\partial_{X}, \partial_{Y}\right]$.
b) Show that, for any $f \in C^{\infty}(M)$, one has $[X, f Y]=\partial_{X} f \cdot Y+f[X, Y]$.
c) Show that, if $x: U \rightarrow V$ is a chart of $M$, then $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0$ for all $1 \leq i, j \leq n$. Deduce that, if $\left.X\right|_{U}=X^{i} \frac{\partial}{\partial x^{i}}$ and $\left.Y\right|_{U}=Y^{i} \frac{\partial}{\partial x^{i}}$, then

$$
\left.[X, Y]\right|_{U}=\left(\partial_{X}\left(Y^{i}\right)-\partial_{Y}\left(X^{i}\right)\right) \frac{\partial}{\partial x^{i}}=\left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \frac{\partial}{\partial x^{i}} .
$$

## 3. Exercise (4 points).

Let $M$ be a compact smooth $n$-dimensional manifold. By definition, a one-parameter group of diffeomorphisms on $M$ is a smooth map $\varphi: M \times \mathbb{R} \rightarrow M,(x, t) \mapsto \varphi_{t}(x)$, with $\varphi_{0}=\operatorname{Id}_{M}$ and $\varphi_{t} \circ \varphi_{s}=\varphi_{t+s}$ for all $s, t \in \mathbb{R}$.
a) Show that, given any one-parameter group of diffeomorphisms $\left(\varphi_{t}\right)_{t}$ on $M$, the map $\left.X\right|_{x}:=\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{t}(x)\right)$ defines a smooth tangent vector field on $M$.
b) Prove that a one-parameter group of diffeomorphisms $\varphi_{t}$ as above with $X \in \mathfrak{X}(M)$ as in a) necessarily has to satisfy

$$
\left.\frac{d}{d t}\right|_{t=s}\left(\varphi_{t}(x)\right)=\mathrm{d} \varphi_{s}\left(\left.X\right|_{x}\right)=\left.X\right|_{\varphi_{s}(x)} .
$$

c) Conversely, show that, given any smooth vector field $X$ on $M$, there exists a unique one-parameter group of diffeomorphisms $\left(\varphi_{t}\right)_{t}$ on $M$ such that $\left.\frac{d}{d t}\right|_{t=0}\left(\varphi_{t}(x)\right)=X(x)$ for all $x \in M$.
Hint: First construct $\varphi_{t}(x)$ for fixed $x$ and $t$ close to 0 using the theorem of PicardLindelöf and using b); then show that $(x, t) \mapsto \varphi_{t}(x)$ can be extended to $M \times \mathbb{R}$.
4. Exercise: Proof of Prop. II.4.7 (4 points).

Let $N$ and $M$ be smooth manifolds, and $\varphi: N \rightarrow M$ a smooth map, $p \in N$ and $\xi \in T_{p} N$. We equip $M$ with a semi-Riemannian metric $g$, which then determines the Levi-Civita connection on $M$. Let $\eta, \tilde{\eta} \in C^{\infty}\left(N, \varphi^{*} T M\right)$ be two vector fields along $\varphi$. Show that

$$
\partial_{\xi}(g(\eta, \tilde{\eta}))=g\left(\nabla_{\xi} \eta, \tilde{\eta}(p)\right)+g\left(\eta(p), \nabla_{\xi} \tilde{\eta}\right) .
$$

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, November 28
12 noon in the letterbox of your group (no. 15 or 16)

## Exercise Sheet no. 6

1. Exercise (4 points).

We define the hyperbolic plane as

$$
\mathbb{H}:=\left\{x+i y \mid x \in \mathbb{R}, y \in \mathbb{R}_{>0}\right\}
$$

endowed with the metric $g^{\text {hyp }}:=\frac{1}{y^{2}} e^{\text {eukl }}$ at $z=x+i y$.
a) Compute the Christoffel symbols with respect to the chart given by the identity $\mathbb{H} \rightarrow \mathbb{H} \subset \mathbb{R}^{2}$.
b) Compute explicitly the parallel transport $\mathcal{P}_{c_{t}, 0,1}: T_{(0,1)} \mathbb{H} \rightarrow T_{(t, 1)} \mathbb{H}$ along the curve $c_{t}:[0,1] \rightarrow \mathbb{H}$ with $c_{t}(s):=(s t, 1)$.
c) Let $x_{0} \in \mathbb{R}$ and $a \in \mathbb{R} \backslash\{0\}$. Show that $\gamma: \mathbb{R} \rightarrow \mathbb{H}, t \mapsto\left(x_{0}, e^{a t}\right)$ satisfies $\frac{\nabla}{d t} \dot{\gamma}(t)=0$.
2. Exercise (4 points).

We consider $S^{2}:=\left\{p \in \mathbb{R}^{3} \mid\|p\|=1\right\}$ with the metric induced from $\mathbb{R}^{3}$.
a) We consider the following local parametrization

$$
\psi:(0,2 \pi) \times(0, \pi) \rightarrow S^{2},(\varphi, \theta) \mapsto(\sin (\theta) \cos (\varphi), \sin (\theta) \sin (\varphi), \cos (\theta))
$$

whose inverse defines so-called spherical polar coordinates. We also write $x^{1}=\phi$ and $x^{2}=\theta$. Calculate the associated coordinate vector fields, the coefficients $g_{i j}$ of the metric and the Christoffel symbols $\Gamma_{i j}^{k}$.
b) For $\theta \in(0, \pi)$ we define $c:[0,2 \pi] \rightarrow S^{2}, c(t):=(\sin (\theta) \cos (t), \sin (\theta) \sin (t), \cos (\theta))$, $p:=c(0)$. Compute the parallel transport $P_{c, 0,2 \pi}: T_{p} S^{2} \rightarrow T_{p} S^{2}$, so $P_{c, 0,2 \pi} \in \operatorname{End}\left(T_{p} S^{2}\right)$.
3. Exercise: Levi-Civita connection for submanifolds (4 points).

Assume $N, K \in \mathbb{N}_{0}$. Let $M$ be a semi-Riemannian submanifold of $\mathbb{R}^{N, K}=\left(\mathbb{R}^{N+K},\langle\cdot, \cdot\rangle_{N, K}\right)$ where $\langle\cdot, \cdot\rangle_{N, K}$ was defined in Exercise 1 of Sheet no. 1. We write $\iota: M \rightarrow \mathbb{R}^{N+K}$ for the inclusion. Then for $p \in M$ we get an embedding $d_{p} \iota: T_{p} M \rightarrow \mathbb{R}^{N, K}$ which we use to identify $T_{p} M$ with its image in $\mathbb{R}^{N, K}$.
a) Show that there is a well-defined linear map

$$
\pi_{p}^{\tan }: \mathbb{R}^{N, K} \rightarrow T_{p} M
$$

that is the identity on $T_{p} M$ and such that

$$
\operatorname{ker}\left(\pi_{p}^{\mathrm{tan}}\right)=\left\{X \in \mathbb{R}^{N, K} \mid\langle X, Y\rangle_{N, K}=0 \forall Y \in T_{p} M\right\}
$$

Now let $X \in T_{p} M$ and let $Y \in \mathfrak{X}(M)$ be given. You may assume in this exercise that there is a smooth vector field $\widetilde{Y} \in \mathfrak{X}\left(\mathbb{R}^{N+K}\right), \widetilde{Y}=\left(\widetilde{Y}^{1}, \ldots, \widetilde{Y}^{N+K}\right): \mathbb{R}^{N, K} \rightarrow \mathbb{R}^{N, K}$ such that

$$
\left.\widetilde{Y}\right|_{M}=Y .
$$

Let $\partial_{X} \widetilde{Y}$ be defined componentwise, i.e. let $\partial_{X} \widetilde{Y}=\left(\partial_{X} \widetilde{Y}^{1} \ldots, \partial_{X} \widetilde{Y}^{N+K}\right)$. We define $D_{X} \widetilde{Y}:=\pi_{p}^{\tan }\left(\partial_{X} \widetilde{Y}\right)$. Prove the following:
b) $D_{X} \widetilde{Y}$ does not depend on how one extends $Y$ to $\widetilde{Y}$. Furthermore prove that $D_{X} \widetilde{Y}$ is local in the sense, that for a neighborhood $U \Subset \mathbb{R}^{N, K}$ of $p$, the term $D_{X} \widetilde{Y}$ only depends on $X$ and $\left.Y\right|_{U \cap M}$.
c) Show that $D_{X} \widetilde{Y}$ satisfies the properties

- (ii) linearity in $\widetilde{Y}$
- (iv) product rule
- (v) metric compatibility
in the definition of the Levi-Civita connection in the lecture from Nov 10th given by M. Ludewig.
d) Let $\widetilde{X}: \mathbb{R}^{N, K} \rightarrow \mathbb{R}^{N, K}$ be a smooth extension of $X$ with $\forall_{q \in M}:\left.\widetilde{X}\right|_{q} \in T_{q} M$. Show

$$
D_{X} \widetilde{Y}-D_{\left.Y\right|_{p}} \widetilde{X}=\left.[\widetilde{X}, \widetilde{Y}]\right|_{p}
$$

e) Conclude that $D_{X} \widetilde{Y}=\left.\left(\nabla_{X} Y\right)\right|_{p}$.

As defined on Nov 10th, $\nabla$ denotes the Levi-Civita connection of the semi-Riemannian manifold $M$ in this formula.
4. Exercise (4 points).

Let $M$ be a smooth, not necessarily compact, manifold. Given a 1-parameter group of diffeomorphisms $\varphi: M \times \mathbb{R} \rightarrow M,(x, t) \mapsto \varphi_{t}(x)$ on $M$, let $X$ be the associated tangent vector field on $M$ as in Exercise no. 3 of sheet 5 . Show that, for any smooth tangent vector field $Y$ on $M$ and point $p \in M$ it is

$$
\left.\left.\frac{d}{d t}\right|_{t=0}\left(\left(\varphi_{t}\right)_{*} Y\right)\right|_{p}=-\left.[X, Y]\right|_{p},
$$

where, for any diffeomorphism $\psi: M \rightarrow M$, the term $\psi_{*} Y$ denotes the pushforward tangent vector field of $Y$ defined by $\psi_{*} Y:=\mathrm{d} \psi \circ Y \circ \psi^{-1}$.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, December 5

## Exercise Sheet no. 7

1. Exercise (4 points).

We have already seen that

$$
\mathbb{H}^{n}:=\left\{X \in \mathbb{R}^{n, 1}\left|\langle X, X\rangle=-1, X^{n+1}\right\rangle 0\right\}
$$

is a semi-Riemannian submanifold of $\mathbb{R}^{n, 1}$. The induced Riemannian metric on $\mathbb{H}^{n}$ is called the hyperbolic metric $g_{\text {hyp }}$.
a) Let $f: \mathbb{R}^{n, 1} \rightarrow \mathbb{R}^{n, 1}$ be a linear map. Show that $f\left(e_{1}\right), \ldots, f\left(e_{n+1}\right)$ is a generalized o.n.b. iff $f$ is an isometry. Show that $f\left(\mathbb{H}^{n}\right)=\mathbb{H}^{n}$ if $f$ is an isometry with $\left\langle e_{n+1}, f\left(e_{n+1}\right)\right\rangle_{n, 1}<0$.
b) Let $p, q \in \mathbb{H}^{n}, p \neq q$. Construct an isometry $f: \mathbb{R}^{n, 1} \rightarrow \mathbb{R}^{n, 1}$ such that $\operatorname{Fix}(f)=$ $\operatorname{span}\{p, q\}$. Conclude that $\left.\right|_{\mathbb{H}^{n}}$ defines an isometry $\mathbb{H}^{n} \rightarrow \mathbb{H} \mathbb{H}^{n}$.
c) Define $\tilde{v}:=q+\langle p, q\rangle_{n, 1} \cdot p$ and $v:=\tilde{v} / \sqrt{\langle\tilde{v}, \tilde{v}\rangle_{n, 1}}$. Show that $p, v$ is a generalized orthonormal basis of $\operatorname{span}\{p, q\}$. For $t \in \mathbb{R}$ we define $\gamma_{p, v}(t):=\cosh (t) p+\sinh (t) v$. Conclude that the image of $\gamma_{p, v}$ is $\mathbb{H}^{n} \cap \operatorname{span}\{p, q\}$.
d) Show that $\gamma_{p, v}$ is a geodesic. (Hint: Prop. 6.14 of the lecture can be helpful). Let $\gamma$ be a geodesic in $\mathbb{H}^{n}$. Show that $\gamma$ is either a constant or a reparametrisation of a $\gamma_{p, v}$ as above.
2. Exercise (4 points).

Let $F: M \rightarrow N$ be a smooth map between smooth manifolds $M$ and $N$. Let $X, Y$ (resp. $\tilde{X}, \tilde{Y})$ be (smooth) vector fields on $M$ (resp. $N$ ). We say that $X$ is $F$-related to $\tilde{X}$ if $d F \circ X=\tilde{X} \circ F$ holds on $M$.
Show that, if $X$ is $F$-related to $\tilde{X}$ and $Y$ is $F$-related to $\tilde{Y}$, then $[X, Y$ ] is $F$-related to $[\tilde{X}, \tilde{Y}]$.
3. Exercise (4 points).

Let $(M, g)$ be a semi-Riemannian manifold with Levi-Civita connection $\nabla$.
i) Show that there exists a unique family of $\mathbb{R}$-bilinear operators

$$
\nabla^{(r, s)}: \mathfrak{X}(M) \times \Gamma\left(T^{r, s}(M)\right) \rightarrow \Gamma\left(T^{r, s}(M)\right), \text { where } r, s \in \mathbb{N}_{0}
$$

satisfying the following properties:
a) $\nabla_{X}^{(0,0)} f=\partial_{X} f$,
b) $\nabla_{X}^{(1,0)} Y=\nabla_{X} Y$,
c) $\left(\nabla_{X}^{(0,1)} \omega\right)(Y)=\partial_{X}(\omega(Y))-\omega\left(\nabla_{X} Y\right)$,
d) $\nabla_{X}^{\left(r+r^{\prime}, s+s^{\prime}\right)}\left(T \otimes T^{\prime}\right)=\left(\nabla_{X}^{(r, s)} T\right) \otimes T^{\prime}+T \otimes\left(\nabla_{X}^{\left(r^{\prime}, s^{\prime}\right)} T^{\prime}\right)$.

Hint: Show first that $\nabla^{(r, s)}$ is a local operator and then construct it chartwise. Then check that on the intersection of the domains of two charts, the covariant derivations defined by the two charts coincide.

Bonus: Show formally that this family of connections is $C^{\infty}$-linear in the first argument:

$$
\nabla_{f X}^{(r, s)} T=f \cdot \nabla_{X}^{(r, s)} T .
$$

ii) Consider some tensor field $T \in \Gamma\left(T^{0, k}(M)\right)$ with $k \in \mathbb{N}$. Show that for vector fields $X_{1}, \ldots, X_{k} \in \mathfrak{X}(M)$ one has the formula

$$
\begin{aligned}
\left(\nabla_{X}^{(0, k)} T\right)\left(X_{1}, \ldots, X_{k}\right)= & \partial_{X}\left(T\left(X_{1}, \ldots, X_{k}\right)\right) \\
& -\sum_{i=1}^{k} T\left(X_{1}, \ldots, X_{i-1}, \nabla_{X} X_{i}, X_{i+1}, \ldots, X_{k}\right) .
\end{aligned}
$$

4. Exercise (4 points).

Let $(M, g)$ be a smooth compact Riemannian manifold. For $c \in \mathbb{R}_{>0}$ show that $S_{c} M:=$ $\left\{X \in T M \mid g(X, X)=c^{2}\right\}$ is compact. Then prove that every maximal geodesic of $(M, g)$ is defined on all of $\mathbb{R}$.
Hint: recall what is known for maximally defined solutions of first order ODEs satisfying the Picard-Lindelöf assumptions on an open subsets of $\mathbb{R}^{n}$.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, December 12
UR

## Exercise Sheet no. 8

1. Exercise (4 points).

Let $\left(M_{1}, g_{1}\right),\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds with the induced Levi-Civita connections $\nabla^{1}, \nabla^{2}$. We identify (as in Exercise sheet no. 3, Exercise 1)

$$
T_{(p, q)}\left(M_{1} \times M_{2}\right) \cong T_{p} M_{1} \times T_{q} M_{2}
$$

and define the product metric $g_{1} \oplus g_{2}$ on $M_{1} \times M_{2}$ by

$$
g_{1} \oplus g_{2}\left(\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right)=g_{1}\left(v_{1}, v_{2}\right)+g_{2}\left(w_{1}, w_{2}\right) .
$$

For vector fields $X_{i} \in \mathfrak{X}\left(M_{i}\right)$ where $i=1,2$ we define $X_{1} \oplus X_{2} \in \mathfrak{X}\left(M_{1} \times M_{2}\right)$ by the formula

$$
\left.\left(X_{1} \oplus X_{2}\right)\right|_{(p, q)}=\left(\left.X_{1}\right|_{p},\left.0\right|_{q}\right)+\left(\left.0\right|_{p},\left.X_{2}\right|_{q}\right) .
$$

a) Construct a vector $X \in \mathfrak{X}\left(\mathbb{R}^{2}\right)$ that cannot be written as $X=X_{1} \oplus X_{2}$ for vectors fields $X_{i} \in \mathfrak{X}(\mathbb{R})$.
b) Let $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ be vector fields on $M_{1} \times M_{2}$. Show that the Levi-Civita connection $\nabla$ of $\left(M_{1} \times M_{2}, g_{1} \oplus g_{2}\right)$ satisfies

$$
\nabla_{Y} X=\nabla_{X_{1}}^{1} Y_{1}+\nabla_{X_{2}}^{2} Y_{2}
$$

c) Let $c_{1}, c_{2}$ be geodesics on $M_{1}$ respectively $M_{2}$. Conclude, that $c(t)=\left(c_{1}(t), c_{2}(t)\right)$ is a geodesic on $M_{1} \times M_{2}$.
2. Exercise (4 points).

Consider the hyperbolic plane ( $\mathfrak{H}, g^{\text {hyp }}$ ), where

$$
\mathfrak{H}=\{x+i y \in \mathbb{C} \mid x \in \mathbb{R} \text { and } y>0\}
$$

with metric given by $g_{x+i y}^{\mathrm{hyp}}=\frac{1}{y^{2}}$ eucl $^{\text {euc }}$. Let $r>0, a \in \mathbb{R}$. Show that the half-circles

$$
C_{r, a}=\{z \in \mathfrak{H}| | z-a \mid=r\}
$$

are (up to reparametrisation) geodesics of the hyperbolic plane.
$A$ way to solve this is as follows. First show that one can reduce to the case $(r, a)=(1,0)$. Then find a Möbius transformation $\Psi_{A}: z \mapsto \frac{a z+b}{c z+d}$ where $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{R})$, with $\Psi_{A}(i)=$ $i$ and $\Psi_{A}(0)=-1$. Conclude the statement by application of $\Psi_{A}$ to the geodesic $\gamma(t)=i e^{t}$.
3. Exercise: Models of the hyperbolic plane (4 points).

In this Exercise we want to identify three models of the hyperbolic plane.

- The hyperboloid model

$$
\mathbb{H}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1 \text { and } z>0\right\}
$$

equipped with the induced metric from $\mathbb{R}^{2,1}$ (as in Sheet no. 7, Exercise 1).

- The Poincaré half-plane model

$$
\mathfrak{H}=\{x+i y \in \mathbb{C} \mid y>0\}
$$

with the Riemannian metric $g_{x+i y}^{\mathfrak{5}}=\frac{1}{y^{2}} g^{\text {eucl }}$.

- The Poincaré disk model

$$
\mathbb{D}=\left\{x+i y \in \mathbb{C} \mid x^{2}+y^{2}<1\right\},
$$

equipped with the metric $g_{x+i y}^{\mathbb{D}}=\left(\frac{2}{\left(1-\left(x^{2}+y^{2}\right)\right)}\right)^{2} g^{\text {eucl }}$.
a) We define a sterographic projection $f: \mathbb{H}^{2} \rightarrow \mathbb{D}$ by the following procedure: Every point $p \in \mathbb{H}^{2}$ is send to the intersection point of the connecting straight line of $p$ and the point $(0,0,-1)$ with the $x-y$-plane. Show that $f$ is an isometry.
b) Show that the map

$$
h: \mathfrak{H} \rightarrow \mathbb{D}, \quad z \mapsto \frac{z-i}{z+i}
$$

is an isometry.
4. Exercise (4 points).

Let $M$ and $N$ be semi-Riemannian manifolds of the same dimension. Assume that $N$ is connected.
a) Let $f_{1}, f_{2}: N \rightarrow M$ be two isometries. Assume there exists a point $p \in N$ such that $f_{1}(p)=f_{2}(p)$ and $d_{p} f_{1}=d_{p} f_{2}$ holds. Show that the two isometries coincide.
b) Let $f: M \rightarrow M$ be an isometry. Show that the fix point set $\operatorname{Fix}(f)=\{p \in M \mid f(p)=p\}$ is a submanifold ${ }^{1}$ of $M$.
Hint: Use the exponential function of $M$.

[^0]
# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, December 19

## Exercise Sheet no. 9

## 1. Exercise (4 points).

Let $\left(M^{n}, g\right)$ be a Riemannian manifold and $x: U \rightarrow V$ be a chart of $M$. Define

$$
R_{i j k}^{l}=d x^{l}\left(R\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}\right)
$$

the components of the Riemannian curvature tensor with respect to the chart $x$. Show that in these coordinate the representation of the curvature tensor in terms of the Christoffel symbols is given by:

$$
R_{i j k}^{l}=\frac{\partial \Gamma_{j k}^{l}}{\partial x^{i}}-\frac{\partial \Gamma_{i k}^{l}}{\partial x^{j}}+\sum_{m=1}^{n}\left(\Gamma_{m i}^{l} \Gamma_{k j}^{m}-\Gamma_{m j}^{l} \Gamma_{k i}^{m}\right) .
$$

2. Exercise (4 points).

Consider the sphere $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ with induced Riemannian metric $g_{\mathbb{S}^{n}}$. Let $\left\{e_{i}\right\}_{i} \subset \mathbb{R}^{n+1}$ be the standard orthonormal basis and define the vector fields $X_{i} \in \mathfrak{X}\left(\mathbb{R}^{n+1}\right)$

$$
\left.\left(X_{i}\right)\right|_{p}=e_{i}-\left\langle e_{i}, p\right\rangle p \text { for all } p \in \mathbb{R}^{n+1}
$$

In this exercise we want to compute the Riemannian curvature tensor of the standard metric of the sphere. We proceed as follows:
a) Show that $\left.X_{i}\right|_{\mathbb{S}^{n}} \in \mathfrak{X}\left(\mathbb{S}^{n}\right)$.
b) Recall that the Levi-Civita connection on $\mathbb{S}^{n}$ is given by $\left(\nabla_{X} Y\right)_{\mid p}=\pi_{p}^{\tan }\left(\partial_{X} \tilde{Y}\right)$ for $X \in T_{p} M$ and $Y \in \mathfrak{X}\left(\mathbb{S}^{n}\right)$ with an extension $\tilde{Y} \in \mathfrak{X}\left(\mathbb{R}^{n+1}\right)$ and $\pi_{p}^{\text {tan }}$ is the orthogonal projection $\mathbb{R}^{n+1} \rightarrow T_{p} \mathbb{S}^{n}$. Show:

$$
\left.\left(\nabla_{X_{j}} X_{k}\right)\right|_{p}=-\left.\left\langle e_{k}, p\right\rangle X_{j}\right|_{p}
$$

c) Show for $i, j, k \geq 2:\left.\left(R\left(X_{i}, X_{j}\right) X_{k}\right)\right|_{e_{1}}=-\delta_{i k} e_{j}+\delta_{j k} e_{i}$.
d) Show that for all points $p, q \in \mathbb{S}^{n}$ there exists a $A \in \operatorname{SO}(n+1)$ such that $A p=q$ holds. Conclude that the full Riemannian curvature of the standard sphere is given by:

$$
g_{\mathbb{S}^{n}}(R(X, Y) Z, T)=g_{\mathbb{S}^{n}}(Y, Z) g_{\mathbb{S}^{n}}(X, T)-g_{\mathbb{S}^{n}}(X, Z) g_{\mathbb{S}^{n}}(Y, T)
$$

3. Exercise (4 points).

Let $(M, g)$ be a Riemannian manifold and $p \in M$ a point in M . Let $\hat{R}$ be a curvature tensor for $T_{p} M$, i.e. a tensor $\hat{R} \in T_{p} M \otimes\left(T_{p}^{*} M\right)^{\otimes 3}$, which satisfies the following identities:

$$
\begin{aligned}
& \hat{R}\left(X_{1}, X_{2}, X_{3}\right)=-\hat{R}\left(X_{2}, X_{1}, X_{3}\right) \\
& g_{p}\left(\hat{R}\left(X_{1}, X_{2}, X_{3}\right), X_{4}\right)=-g_{p}\left(\hat{R}\left(X_{1}, X_{2}, X_{4}\right), X_{3}\right) \\
& \hat{R}\left(X_{1}, X_{2}, X_{3}\right)+\hat{R}\left(X_{2}, X_{3}, X_{1}\right)+\hat{R}\left(X_{3}, X_{1}, X_{2}\right)=0
\end{aligned}
$$

for all $X_{1}, X_{2}, X_{3}, X_{4} \in T_{p} M$. We take a chart $x: U \rightarrow V$ with $x(p)=0$ and construct a Riemannian metric

$$
g_{i j}(x)=\delta_{i j}-\frac{1}{3} \sum_{\alpha, \beta} \hat{R}_{i \alpha \beta j} x^{\alpha} x^{\beta}
$$

on the chart neighborhood $U$. Show that $R_{p}=\hat{R}$ holds.
4. Exercise (4 points).

Let $(M, g)$ be a Riemannian manifold and $f: M \rightarrow \mathbb{R}$ be a smooth function. We define gradient vector field of $f$ by

$$
g(\operatorname{grad} f, X)=X(f)
$$

for all $X \in \mathfrak{X}(M)$. Moreover we define the Hessian of $f$ by

$$
\operatorname{Hess}(f)(X, Y)=(\nabla d f)(X, Y)
$$

for all $X, Y \in \mathfrak{X}(M)$.
a) Show that the gradient is a well-defined smooth vector field on $M$.
b) Let $x: U \rightarrow V$ be a chart. Show the local representation of the gradient of $f$ :

$$
\left.\operatorname{grad} f\right|_{U}=\sum_{i, j} g^{i j} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{j}}
$$

If $\left(e_{i}\right)$ is a generalized orthonormal basis of $T_{p} M$ with $g_{p}\left(e_{i}, e_{j}\right)=\epsilon_{i} \delta_{i j}$, then show

$$
\left.\operatorname{grad} f\right|_{p}=\sum_{i} \epsilon_{i} \partial_{e_{i}} f \cdot e_{i}
$$

c) Show that the Hessian of $f$ is a well-defined $(0,2)$ tensor on $M$. Does it depend on $g$ ?
d) Show that the Hessian is given by $\operatorname{Hess}(f)=\partial_{X}\left(\partial_{Y}(f)\right)-\left(\nabla_{X} Y\right)(f)$ and that $\operatorname{Hess}(f)$ is symmetric.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl Please hand in the exercises until Tuesday, January 9

1. Exercise: Polar normal coordinates (4 points).

Let $\left(M^{2}, g\right)$ be a 2-dimensional Riemannian manifold. Let $p \in M$ be a point and choose an $\epsilon>0$ such that the exponential map $\exp _{p}: B_{\epsilon}(0) \rightarrow \exp _{p}\left(B_{\epsilon}(0)\right)$ is a diffeomorphism. Denote by $x=\left(x^{1}, x^{2}\right)$ the normal coordinates at $p$ and consider the induced Polar normal coordinates $(r, \varphi)$ via the identification $T_{p} M \cong \mathbb{R}^{2}$ with euclidean space.
a) Show that we have the following identification of the induced coordinate vector fields:

$$
\begin{aligned}
& \frac{\partial}{\partial r}=\cos (\varphi) \frac{\partial}{\partial x^{1}}+\sin (\varphi) \frac{\partial}{\partial x^{2}} \\
& \frac{\partial}{\partial \varphi}=-r \sin (\varphi) \frac{\partial}{\partial x^{1}}+r \cos (\varphi) \frac{\partial}{\partial x^{2}}
\end{aligned}
$$

b) Determine the coefficients of the metric in Polar normal coordinates $g_{r r}, g_{r \varphi}, g_{\varphi \varphi}$ in terms of the metric $g_{i j}$ with respect to normal coordinates.
c) Let $\left(E_{1}, E_{2}\right)$ be an orthonormal basis of $\left(T_{p} M, g_{p}\right)$. Consider the closed curve $\gamma_{r}(t)=$ $\exp _{p}\left(r \cos (t) E_{1}+r \sin (t) E_{2}\right)$ on $M$ for $t \in[0,2 \pi]$ and a radius $r<\epsilon$. Show that the sectional curvature $K_{p}$ of $(M, g)$ at $p$ can be computed as follows

$$
K_{p}=\frac{3}{\pi} \lim _{r \rightarrow 0} \frac{2 \pi r-\mathcal{L}\left[\gamma_{r}\right]}{r^{3}},
$$

where $\mathcal{L}\left[\gamma_{r}\right]$ is the length of the curve $\gamma_{r}$. Can you give a heuristic explanation of this formula? Hint: Use the Taylor expansion of the metric in normal coordinates and express it then in Polar normal coordinates.
2. Exercise: Bianchi identities (4 points).

Let $\alpha \in \Omega^{1}(M)$ be a 1-form and $\beta \in \Omega^{2}(M)$ be a 2 -form on a Riemannian manifold ( $M, g$ ). Let $X_{1}, X_{2}, X_{3}, X_{4} \in \mathfrak{X}(M)$ be vector fields on $M$. Recall the expressions of the Cartan differential:

$$
\begin{aligned}
d \alpha\left(X_{1}, X_{2}\right) & =X_{1}\left(\alpha\left(X_{2}\right)\right)-X_{2}\left(\alpha\left(X_{1}\right)\right)-\alpha\left(\left[X_{1}, X_{2}\right]\right) \\
d \beta\left(X_{1}, X_{2}, X_{3}\right) & =\sum_{\sigma} X_{\sigma(1)}\left(\beta\left(X_{\sigma(2)}, X_{\sigma(3)}\right)\right)-\beta\left(\left[X_{\sigma(1)}, X_{\sigma(2)}\right], X_{\sigma(3)}\right)
\end{aligned}
$$

where the sum in the second formula runs over all cyclic permutations of the set $\{1,2,3\}$.
a) Show:

$$
d \alpha\left(X_{1}, X_{2}\right)=\left(\nabla_{X_{1}} \alpha\right)\left(X_{2}\right)-\left(\nabla_{X_{2}} \alpha\right)\left(X_{1}\right)
$$

b) Use $d d \alpha=0$ to deduce the first Bianchi identity:

$$
R\left(X_{1}, X_{2}\right) X_{3}+R\left(X_{2}, X_{3}\right) X_{1}+R\left(X_{3}, X_{1}\right) X_{2}=0
$$

c) Let $X \in \mathfrak{X}(M)$ be a fixed vector field. Define $\tilde{\alpha}\left(X_{1}\right)=\alpha\left(\nabla_{X_{1}} X\right)$ and deduce, by using $d d \tilde{\alpha}=0$, the second Bianchi identity:

$$
\left(\nabla_{X_{1}} R\right)\left(X_{2}, X_{3}\right)+\left(\nabla_{X_{2}} R\right)\left(X_{3}, X_{1}\right)+\left(\nabla_{X_{3}} R\right)\left(X_{1}, X_{2}\right)=0
$$

3. Exercise (4 points).

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Denote by $R$ the Riemannian curvature tensor as a (1,3)-tensor. Let $X, Y, Z, U, W \in \mathfrak{X}(M)$ be vector fields on $M$, then define

$$
\begin{array}{r}
R^{(0,4)}(X, Y, Z, W)=g(R(X, Y) Z, W) \\
g\left(R^{\Lambda^{2}}(X \wedge Y), Z \wedge W\right)=R(X, Y, Z, W)
\end{array}
$$

the associated ( 0,4 )-tensor and curvature endomorphism.
a) Let $\left\{e_{i}\right\}_{i} \subset T_{p} M$ be an orthonormal basis of $g$. Show that by

$$
g_{p}\left(e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right)=\delta_{i k} \delta_{j l}
$$

for $i<j$ and $k<l$ we obtain a non-degenerated bilinearform on $T_{p} M$, which depends smoothly on $p$.
b) Show that $R^{(0,4)}$ is a well-defined (0,4)-tensor on $M$ and $R^{\Lambda^{2}}$ is a well-defined map $\Lambda^{2} T_{p} M \rightarrow \Lambda^{2} T_{p} M$, which depends smoothly on $p$.
c) Show that we have the following identities:

$$
\begin{aligned}
& \left(\nabla_{X} R^{(0,4)}\right)(Y, Z, U, W)=-\left(\nabla_{X} R^{(0,4)}\right)(Z, Y, U, W) \\
= & \left(\nabla_{X} R^{(0,4)}\right)(U, W, Y, Z)=-\left(\nabla_{X} R^{(0,4)}\right)(Y, Z, W, U)
\end{aligned}
$$

d) Let $T \in \Gamma\left(T^{(0, s)} M\right)$ be a ( $0, s$ )-tensor for $s \geq 1$. We define the divergence of $T$ by

$$
\operatorname{div}(T)\left(X_{1}, \ldots, X_{s-1}\right):=\sum_{j=1}^{n}\left(\nabla_{e_{j}} T\right)\left(e_{j}, X_{1}, \ldots, X_{s-1}\right)
$$

where $\left\{e_{j}\right\}_{j}$ is an orthonormal basis of $T_{p} M$ and $X_{1}, \ldots, X_{s-1} \in T_{p} M$. Show:

$$
\operatorname{div}(\text { ric })=\frac{1}{2} d \text { scal. }
$$

Hint: Use the second Bianchi identity for the Riemannian curvature tensor.
4. Exercise: Schur's Lemma (4 points).

Let ( $M^{n}, g$ ) be a Riemannian manifold.
a) Assume $n \geq 2$ and the sectional curvature $K_{p}$ only depends on the point $p$. Then Riemannian curvature tensor is of the form

$$
g(R(X, Y) Z, W)=\kappa \cdot(g(X, Z) g(Y, W)-g(Y, Z) g(X, W))
$$

where $\kappa: M \rightarrow \mathbb{R}$ is a smooth function.
b) Assume $n \geq 3$ and the Riemannian curvature tensor is of the form above. Show that ric $=(n-1) \kappa g$ holds and that in this case that the function $\kappa$ is locally constant. Hint: Use Exercise 3, d).

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, January 16

## Exercise Sheet no. 11

1. Exercise (4 points).

Let $(M, g)$ be a semi-Riemannian manifold and $N \subset M$ be an open subset. Assume that $N$ is geodesically complete ${ }^{1}$ and $M$ is connected. Show that $N=M$ holds. Hint: Consider a point in the boundary $\bar{N} \backslash N$.
2. Exercise (4 points).

Let $N \subset M$ be a semi-Riemannian submanifold of the semi-Riemannian manifold ( $M, g$ ). We say that $N$ is totally geodesic if the second fundamental form $\vec{I} \equiv 0$ vanishes.
a) Show that $N$ is totally geodesic iff every geodesic of $N$ is also a geodesic of $M$.
b) Assume now that $N$ is geodesically complete. Show that $N$ is totally geodesic iff every geodesic $\gamma: I \rightarrow M$, of $M$ with $\dot{\gamma}(0) \in T N$ is contained in $N$.
c) Do we need the assumption of geodesic completeness in part b) to conclude the statement?
3. Exercise (4 points).

Let $(\bar{M}, \bar{g})$ be a semi-Riemannian manifold and $M$ be submanifold of dimension $n=$ $\operatorname{dim}(M)=\operatorname{dim}(\bar{M})-1$. Assume that there exists a map into the normal bundle $\nu: M \rightarrow$ $\mathcal{N} M$, such that $g(\nu, \nu)=\epsilon \in\{-1,+1\}$ holds. Denote by $g$ the induced Riemannian metric on $M$.
a) Show that there exists a unique bundle map $W \in \Gamma(\operatorname{End}(T M))$ with the property

$$
g(W(X), Y)=\bar{g}(\overrightarrow{\mathbb{I}}(X, Y), \nu)
$$

for all $X, Y \in T_{p} M$ and $p \in M$. In particular, the endomorphism $\left.W\right|_{p}: T_{p} M \rightarrow T_{p} M$ is self-adjoint. We call $W$ the Weingarten map of the embedding $(M, g) \hookrightarrow(\bar{M}, \bar{g})$.
b) Show that $W(X)=-\bar{\nabla}_{X} \nu$ holds for all $X \in T M$.
c) Assume that $\bar{M}$ is Riemannian and $n=\operatorname{dim}(M) \geq 3$. Moreover the metric on $\bar{M}$ is assumed to be flat, i.e. $\bar{R} \equiv 0$. Show that for any point $p \in M$ there is a plane $E \subset T_{p} M$ with $K(E) \geq 0$. Hint: Consider planes $E=\operatorname{span}\left(\xi_{i}, \xi_{j}\right)$ which are spanned by an orthonormal basis $\xi_{1}, \ldots, \xi_{n}$ of eigenvectors of $W$ and use the Gauß formula.

[^1]4. Exercise (4 points).

Let $(\bar{M}, \bar{g})$ be a flat semi-Riemannian manifold and $M$ be a semi-Riemannian submanifold of $\bar{M}$ with dimension $m$ and induced metric $g$. Let $\left(b_{1}, \ldots, b_{m}\right)$ be a generalized orthonormal basis of $T_{p} M$ with the condition $g\left(b_{i}, b_{j}\right)=\delta_{i j} \varepsilon_{i}, \varepsilon_{i} \in\{-1,1\}$. We define the mean curvature vector field by $\vec{H}_{p}:=\sum_{i=1}^{m} \varepsilon_{i} \overrightarrow{\mathrm{I}}\left(b_{i}, b_{i}\right)$.
a) Show that $\vec{H}_{p}$ is well-defined.
b) Show that

$$
\operatorname{Ric}(X, Y)=\bar{g}\left(\vec{H}_{p}, \overrightarrow{\mathbb{I}}(X, Y)\right)-\sum_{i=1}^{m} \varepsilon_{i} \bar{g}\left(\vec{\Pi}\left(b_{i}, X\right), \overrightarrow{\mathbb{I}}\left(b_{i}, Y\right)\right) .
$$

holds for all $X, Y \in T_{p} M$
c) Let $M$ be of dimension $m-1$ and assume that there exists a map into the normal bundle $\nu: M \rightarrow \mathcal{N} M$, such that $g(\nu, \nu)=\epsilon \in\{ \pm 1\}$ holds with associated Weingarten map $W$ (defined in Exercise 3). Show that:

$$
\bar{g}(\nu, \nu) \cdot \text { scal }=(\operatorname{Tr} W)^{2}-\operatorname{Tr}\left(W^{2}\right) .
$$

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, January 23

## Exercise Sheet no. 12

1. Exercise (4 points).

Let $\left(M^{2}, g\right)$ be a two-dimensional Riemannian submanifold of $\mathbb{R}^{3}$. We call $M$ a minimal surface if the mean curvature of $M$ in $\mathbb{R}^{3}$ vanishes.
a) Show that a minimal surface has non-positive sectional curvature, and if the sectional curvature is 0 in $p \in M$, then the fundamental form vanishes in $p$.
b) Consider the catenoid

$$
\begin{aligned}
\Phi_{1}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3} \\
(x, y) & \mapsto\left(\begin{array}{c}
\alpha \cosh (x) \cos (y) \\
\alpha \cosh (x) \sin (y) \\
\sinh (x)
\end{array}\right)
\end{aligned}
$$

and the helicoid

$$
\begin{aligned}
\Phi_{2}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3} \\
(x, y) & \mapsto\left(\begin{array}{c}
x \cos (y) \\
x \sin (y) \\
\beta y
\end{array}\right)
\end{aligned}
$$

with constants $\alpha, \beta \in \mathbb{R}$. Compute the induced metrics $g_{1}, g_{2}$ on $\mathbb{R}^{2}$ and the Weingarten maps. Show that the catenoid and the helicoid are minimal surfaces in $\mathbb{R}^{3}$.
c) Compute the sectional curvatures of both surfaces. Does there exists an isometry $\phi:\left(\mathbb{R}^{2}, g_{1}\right) \rightarrow\left(\mathbb{R}^{2}, g_{2}\right) ?$
d) Show that there does not exists an isometry $\bar{\phi}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\bar{\phi}\left(\right.$ image $\left.\left(\Phi_{1}\right)\right)=$ image $\left(\Phi_{2}\right)$ holds.
2. Exercise (4 points).

Let $\left(M^{n}, g\right)$ be a Riemannian manifold with non-positive sectional curvature, i.e. $K \leq 0$. We denote by $J$ a Jacobi field along a geodesic $c$ of $(M, g)$.
a) Show that $g\left(J, \frac{\nabla^{2}}{d t^{2}} J\right)$ is a non-negative function.
b) Show that $\frac{d^{2}}{d t^{2}}(g(J, J))$ is a non-negative function.
c) Conclude from the previous statements that the Jacobi field vanishes identically or has at most one point where it vanishes.
3. Exercise (4 points).

Let $(M, g)$ be a semi-Riemannian manifold and $J$ be a Jacobi field along a geodesic $c: I=[a, b] \rightarrow M$. Show that there exists a geodesic variation $c_{\bullet}:(-\epsilon, \epsilon) \times I \rightarrow M$ of $c$ such that $J=\left.\frac{d}{d s}\right|_{s=0} c_{s}$ holds.
Hint: For some $t_{0} \in[a, b]$ choose a curve $\gamma:(-\epsilon, \epsilon) \rightarrow M$ with $\gamma(0)=c\left(t_{0}\right)$ and $\dot{\gamma}(0)=$ $J\left(t_{0}\right)$. Find a vector field $X$ along $\gamma$ such that $(s, t) \mapsto c_{s}(t)=\exp _{\gamma(s)}(t X(s))$ is a suitable geodesic variation.
4. Exercise (4 points).

Let $(M, g)$ be a semi-Riemannian manifold.
a) Recall that we denote the parallel transport along a curve $\gamma$ by $\mathcal{P}_{\gamma}$. Let $F: \mathbb{R}^{2} \rightarrow M$ be a smooth map and denote by $\gamma_{t}$ the curve in $M$ which is given by

$$
\gamma_{t}(s)= \begin{cases}F(4 s t, 0) & s \in\left[0, \frac{1}{4}\right] \\ F(t, t(4 s-1)) & s \in\left[\frac{1}{4}, \frac{1}{2}\right] \\ F(t(3-4 s), t) & s \in\left[\frac{1}{2}, \frac{3}{4}\right] \\ F(0, t(4-4 s)) & s \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

i.e. the piecewise smooth curve which gives the image of the closed polygonal chain with corner points $(0,0),(t, 0),(t, t)$ and $(0, t)$. Show that

$$
\lim _{t \rightarrow 0} \frac{\mathcal{P}_{\gamma_{t}} v-v}{t^{2}}=R\left(\frac{\partial F}{\partial x_{2}}(0), \frac{\partial F}{\partial x_{2}}(0)\right) v
$$

holds for all $v \in T_{F(0,0)} M$.
Hint: Use the following statement from the lecture (Lemma V.4.2): Let $\alpha: \mathbb{R}^{2} \rightarrow M$ be a smooth map and $X$ a vector field along $\alpha$ such that $\frac{\nabla}{\partial x} X=\frac{\nabla}{\partial y} X$ holds, then we have

$$
\frac{\nabla}{\partial x} \frac{\nabla}{\partial x} X-\frac{\nabla}{\partial y} \frac{\nabla}{\partial y} X=R\left(\frac{\partial \alpha}{\partial x}, \frac{\partial \alpha}{\partial y}\right) X
$$

b) If $(M, g)$ is flat, then for every point $p \in M$ and vector $v \in T_{p} M$, there exists an open neighbourhood of $p$ given by $U \subset M$ and a section $X: U \rightarrow T M$ of the tangent bundle $T M$, which is parallel, i.e. $\nabla X=0$ on $U$, and satisfies $X_{p}=v$. Construct a counterexample in the non-flat case for the previous statement.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, January 30

## Exercise Sheet no. 13

1. Exercise (4 points).

Let $M$ be a compact surface (without boundary) in $\mathbb{R}^{3}$. Let $\bar{B}_{r}(0)$ be the closed ball of radius $r$ around 0 in $\mathbb{R}^{3}$, and let $S_{r}(0)=\partial \bar{B}_{r}(0)$ be its boundary.
a) Show that the infimum $R:=\inf \left\{r>0 \mid M \subset \bar{B}_{r}(0)\right\}>0$ is attained, and conclude that $M \cap S_{R}(0)$ is not empty.
b) Show that $T_{p} M$ is the orthogonal complement of $p$ for any $p \in M \cap S_{R}(0)$. Show for any such $p \in M$ that the symmetric bilinear form

$$
T_{p} M \times T_{p} M \rightarrow \mathbb{R}, \quad(X, Y) \mapsto\left\langle\frac{1}{R} p, \overrightarrow{\mathrm{I}}(X, Y)\right\rangle
$$

is negative definit.
c) Are there compact minimal surfaces $M$ in $\mathbb{R}^{3}$ ? Justify your answer.
2. Exercise (4 points).

Let $(M, g)$ be a connected, non-compact, geodesically complete Riemannian manifold and $p \in M$ be a point. You may use the facts that under these conditions $(M, d)$ is a complete metric space and that for any $p, q \in M$ there is a shortest curve from $p$ to $q$.
a) Show the existence of a sequence points $\left\{p_{i}\right\}_{i \in \mathbb{N}}$ in $M$ with $d\left(p, p_{i}\right) \rightarrow \infty$ for $i \rightarrow \infty$.
b) Conclude the existence of a geodesic ray ${ }^{1} \gamma:[0, \infty) \rightarrow M$ with $\gamma(0)=p$.

Hint: Consider a length minimizing geodesic $\gamma_{i}:\left[0, l_{i}\right] \rightarrow M$ with $\gamma_{i}(0)=p$ and $\gamma_{i}\left(l_{i}\right)=$ $p_{i}$. Use the fact that $\left\|\dot{\gamma}_{i}(0)\right\|=1$ to conclude that there exists convergent subsequence $\dot{\gamma}_{i_{j}}(0) \rightarrow X \in T_{p} M$. Consider then $\gamma(t)=\exp _{p}(t X)$ and show $d(p, \gamma(t))=t$.
3. Exercise (4 points).

Let $(M, g)$ be a connected, geodesically complete Riemannian manifold and $N \subset M$ be a closed submanifold. ${ }^{2}$ We fix a point $q \in M \backslash N$. We denote by $d(x, N):=\inf \{d(x, y) \mid y \in N\}$ the minimal distance from $x$ to the submanifold $N$.
a) Show that there exists a point $p \in N$ with $d(q, p)=d(q, N)$. Do we need the assumption that $N$ is closed?
b) Show the existence of a geodesic $\gamma$, which connects $p$ and $q$ with length given by $\mathcal{L}(\gamma)=d(q, p)$.
c) Conclude with the first variation of the energy that the curve $\gamma$ hits $N$ in an orthogonal way.

[^2]4. Exercise (4 points).

Let $M$ be a smooth manifold and $G$ be a group equipped with the discrete topology. Moreover we have a continuous group action

$$
\begin{aligned}
R: M \times G & \rightarrow M \\
(p, g) & \mapsto R(p, g),
\end{aligned}
$$

i.e. $R$ satisfies $R(p, g h)=R(R(p, g), h)$ for all $p \in M$ and $g, h \in G$. We denote by $p \cdot G:=$ $\{R(p, g) \mid g \in G\}$ the orbit of $p$ along the group action and we denote by $M / G:=\{p \cdot G \mid p \in$ $M\}$ the quotient space of the group action. The canonical projection $\pi: M \rightarrow M / G, p \mapsto$ $\pi(p)=p \cdot G$ induces a topology on the quotient $M / G$, i.e. a subset $U \subset M / G$ is open iff $\pi^{-1}(U) \subset M$ is open.
a) Show that the right multiplication maps $R_{g}: M \rightarrow M, p \mapsto R(p, g)$ is a homeomorphism for any $g \in G$. Are these maps also diffeomorphisms?

Now we assume that the group action $R$ is free and properly discontinuous. Here we refer to an action $R$ as free if for any $g \in G \backslash\{e\}$ the right multiplication maps $R_{g}$ has no fixed point. An action $R$ is properly discontinuous if for all points $p, q \in M$ there exist open neighbourhoods $U_{p}, V_{q}$ of $p$ respectively $q$ such that $R_{g}\left(U_{p}\right) \cap V_{q}=\varnothing$ holds for all $g \in G$ with the condition $R(p, g) \neq q$.
b) Show that the quotient space $M / G$ is Hausdorff.
c) Show that the canonical projection $\pi: M \rightarrow M / G$ is a covering map, i.e. for all points $P \in M / G$ there exists an open neighbourhood $U$ of $P$ and a homeomorphism $\Phi_{U}: \pi^{-1}(U) \rightarrow U \times G$ such that $\Phi \circ \operatorname{pr}_{1}=\pi$ holds.
d) (Bonus part) Assume additionally that $R_{g}$ is smooth for any $g \in G$. Show then that the quotient space $M / G$ is a smooth manifold and the canonical projection is a local diffeomorphism.

# Differential Geometry I: Exercises 

University of Regensburg, Winter Term 2023/24
Prof. Dr. Bernd Ammann, Julian Seipel, Roman Schießl
Please hand in the exercises until Tuesday, February 6

## Exercise Sheet no. 14

1. Exercise (4 points).

Let $\varphi:(M, g) \rightarrow(N, h)$ be a smooth map between connected manifolds and $g=\varphi^{*} h$ is the pullback of the metric $h$.
a) If $\varphi$ is a covering map, then show that $(M, g)$ is complete iff $(N, h)$ is complete.
b) Assume that $\varphi$ is a local diffeomorphism and an isometry. Show that if $(M, g)$ is complete, then the map $\varphi$ is a covering map.
2. Exercise (4 points).

Let $\left(M^{n \geq 2}, g\right)$ be connected, complete Riemannian manifold with constant sectional curvature. Assume moreover that $M$ is simply-connected. Show

$$
(M, g) \text { is isometric to } \begin{cases}\mathbb{H}^{n} & \text { if } K=-1 \\ \mathbb{R}^{n} & \text { if } K=0 \\ \mathbb{S}^{n} & \text { if } K=1\end{cases}
$$

3. Exercise (4 points).

Let $\varphi:(M, g) \rightarrow(N, h)$ be a surjective submersion between connected complete Riemannian manifolds. We call $\varphi$ a Riemannian submersion if the map $d_{p} \varphi$ induces an isomorphism $H_{p} M:=\left(\operatorname{ker}\left(d_{p} \varphi\right)\right)^{\perp} \rightarrow T_{\varphi(p)} N$ for each $p \in M$. We call $H M:=\bigcup_{p \in M} H_{p} M \subset T M$ the horizontal subbundle and its elements horizontal.
a) Let $\gamma: I \rightarrow N$ be a smooth curve, $I$ some interval. Show that there exists a horizontal lift $\tilde{\gamma}: I \rightarrow M$, i.e. a curve $\tilde{\gamma}$ satisfying $\dot{\tilde{\gamma}}(t) \in H_{\tilde{\gamma}(t)} M$ and $\varphi \circ \tilde{\gamma}=\gamma$. Also show for any curve $\tau:[a, b] \rightarrow N$ that $\mathcal{L}(\varphi \circ \tau) \leq \mathcal{L}(\tau)$.
b) Show: if $\gamma$ is a geodesic, then its horizontal lift $\tilde{\gamma}$ is also a geodesic. Hint: use the fact that $\gamma$ locally minimizes length to show that $\tilde{\gamma}$ also minimizes length locally.
c) Show: if a horizontal curve $\tau: I \rightarrow M$ is geodesic, then $\varphi \circ \tau: I \rightarrow N$ is also a geodesic.
d) Let $\gamma$ be a geodesic in $M$. Show that if $\dot{\gamma}(0)$ lies in $H_{\gamma(t)} M$ then we have $\dot{\gamma}(t) \in H M$ for all $t \in I$.
4. Exercise (4 points).

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. We assume that $(M, g)$ is locally symmetric, i.e. $\nabla R=0$ holds. In this exercise we want to show that this condition is equivalent to the existence of a local isometry $\sigma_{p}: U \rightarrow \sigma(U)$ with $\sigma(p)=p$ and $d_{p} \sigma=-\mathrm{id}_{T_{p} M}$, defined on open neighbourhood $U \subset M$ of $p$.
a) Let $\epsilon>0$ small enough such that the exponential function is a diffeomorphism onto its image, i.e. $\exp _{p}: B_{\epsilon}(0) \xrightarrow{\approx} \exp _{p}\left(B_{\epsilon}(0)\right)=B_{\epsilon}(p)$. We define the map

$$
\begin{aligned}
\sigma_{p}: B_{\epsilon}(p) & \rightarrow B_{\epsilon}(p) \\
\gamma(t) & \mapsto \gamma(-t),
\end{aligned}
$$

where we use that each point in $B_{\epsilon}(p)$ can be represented by a geodesic emanating from $p$. Show that $\sigma_{p}=\exp _{p} \circ\left(-\mathrm{id}_{T_{p} M}\right) \circ \exp _{p}^{-1}$ holds.
b) Let $v \in B_{\epsilon}(0)$ and $q=\exp _{p}(v)$. Moreover let $\gamma(t)=\exp _{p}(t v)$ and $\bar{\gamma}(t)=\gamma(-t)$ be curves in $M$. We consider the map

$$
\begin{aligned}
F_{t}: T_{\gamma(t)} M & \rightarrow T_{\bar{\gamma}(t)} M \\
w & \mapsto \mathcal{P}_{0, t}^{\bar{\gamma}} \circ\left(-\mathrm{id}_{T_{p} M}\right) \circ \mathcal{P}_{t, 0}^{\gamma}(w),
\end{aligned}
$$

where $\mathcal{P}_{a, b}^{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ denotes the parallel transport along the curve $c: I \rightarrow M$ with $a, b \in I$. Show that for each Jacobi field $J(t)$ along $\gamma$, the field $\bar{J}(t)=F_{t}(J(t))$ is a Jacobi field along $\bar{\gamma}$. Conclude from the previous statement that the map $\sigma_{p}: B_{\epsilon}(p) \rightarrow$ $B_{\epsilon}(p)$ is an isometry.
c) Let $\gamma:(-\epsilon, \epsilon) \rightarrow M$ be a geodesic with $\gamma(0)=p$ and $\dot{\gamma}(0)=v$. Moreover assume that $(M, g)$ is not nessecarily locally symmetric and all the maps $\sigma_{p}$ from part a) are isometries. Show for a parallel frame $\left(e_{1}(t), \ldots, e_{n}(t)\right)$ along $\gamma$ we have

$$
g_{\gamma(t)}\left(R\left(e_{i}(t), e_{j}(t) e_{k}(t)\right), e_{l}(t)\right)=g_{\gamma(-t)}\left(R\left(e_{i}(-t), e_{j}(-t) e_{k}(-t)\right), e_{l}(-t)\right)
$$

and conclude that $(M, g)$ is locally symmetric.


[^0]:    ${ }^{1}$ A subset $N \subset M^{m}$ of a smooth manifold $M$ is a submanifold if for every point $p \in N$ there exists a chart $x: U \rightarrow V$ around the point $p$ such that $x(U \cap N)$ is a submanifold of $\mathbb{R}^{m}$. Note that this definition does not exclude that different connected components might be of different dimension.

[^1]:    ${ }^{1}$ A semi-Riemannian manifold $N$ is geodesically complete if the exponential map is defined on the full tangent bundle $T N$

[^2]:    ${ }^{1}$ A geodesic ray $\gamma:[0, \infty) \rightarrow M$ is a geodesic such that for all compact subsets $K \subset M$ there exists a time $T>0$ such that $\gamma(T) \notin K$ holds.
    ${ }^{2}$ You may use the facts that under these conditions $(M, d)$ is a complete metric space and that for any $p, q \in M$ there is a shortest curve from $p$ to $q$.

