Symplectic Geometry and Classical Mechanics: Exercises

Exercise Sheet no. 11

Exercise 1 (4 points).

Let G be a smooth manifold and a group. Assume that the group multiplication $m: G \times G \rightarrow G$ is a smooth map. Show that the inversion $\iota: G \rightarrow G$ is also smooth. *Hint: Use the equation* $m(\iota(g), g) = e$ *for all* $g \in G$ *and* e *the neutral element of the group.*

Exercise 2 (4 points).

Let $S_1, S_2 \in \mathbb{R}^{n \times n}$ be symmetric matrices. Define for A and B in the Lie algebra $\mathfrak{so}(n) \coloneqq \{M \in \mathbb{R}^{n \times n} \mid M^T = -M\}$ given by

$$\langle A, B \rangle_{S_1, S_2} \coloneqq \operatorname{tr} \left(S_2 A S_1 B^T \right). \tag{1}$$

- a) Let S_1 and S_2 be positive definit. Show that $\langle \cdot, \cdot \rangle_{S_1,S_2}$ is a scalar product on $\mathfrak{so}(n)$.
- b) Show that for any scalar product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on $\mathfrak{so}(3)$, there exists a unique symmetric matrix $S_3 \in \mathbb{R}^{n \times n}$ with $\langle \cdot, \cdot \rangle_{S_{3,\mathrm{id}}} = \langle\!\langle \cdot, \cdot \rangle\!\rangle$. Is S_3 always positive definit.
- c) Prove the existence of scalar products on $\mathfrak{so}(4)$ which are not of the form as in eq. (1).
- d) Show that every scalar product on $\mathfrak{so}(n)$ is a sum of scalar products as in eq. (1) with positive definit S_1 and S_2 .

Exercise 3 (4 points).

Let G be a Lie group. We consider the adjoint action of G on its Lie algebra:

$$\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g}), g \mapsto (X \mapsto \operatorname{d}_e l_q \circ \operatorname{d}_e r_{q^{-1}}(X))$$

where $l, r: G \to \operatorname{Aut}(G)$ are the left and right multiplication of the group G. Let $\langle \cdot, \cdot \rangle$ be a scalar product on \mathfrak{g} . We say that $\langle \cdot, \cdot \rangle$ is Ad-invariant if $\operatorname{Ad}_g^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$ holds for any $g \in G$. A tensor (field) on G is called bi-invariant, if it is both left- and right-invariant.

- a) Show: a scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} can be extended to a bi-invariant Riemannian metric, if and only if $\langle \cdot, \cdot \rangle$ is Ad-invariant.
- b) Assume that we know $d_e(Ad)(X) = ad_X = [X, \cdot]$ for all $X \in T_eg = \mathfrak{g}$. Show: if $\langle \cdot, \cdot \rangle$ is Ad-invariant, then ad_X is skew-symmetric w.r.t. $\langle \cdot, \cdot \rangle$. Is the converse true as well? Or is it true under additional assumptions?
- c) Let γ be a left-invariant Riemannian metric extending the scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} . Show that ad_X is skew-symmetric w.r.t. $\langle \cdot, \cdot \rangle$, iff the Levi-Civita connection for γ is given by $\nabla_X^{\gamma} Y = \frac{1}{2}[X, Y]$ for all $X, Y \in \mathfrak{g}$. *Hint: Use the Koszul formula.*
- d) Show that the induced Riemannian exponential function and the Lie exponential on G coincide for a biinvariant metric γ .
- e) Bonus exercise: Let G be a connected Lie group with a left invariant metric γ . Show that if the induced Riemannian exponential map and the Lie exponential map coincide, then γ is biinvariant.

Exercise 4: Coadjoint orbit (4 points).

Let G be a Lie group and \mathfrak{g} its Lie algebra and $\xi \in \mathfrak{g}^*$ be an element in the dual. We have the adjoint action $\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ and the induced coadjoint action Ad^* given by $(\operatorname{Ad}_g^*\xi)(X) = \xi(\operatorname{Ad}_g X)$ for $X \in \mathfrak{g}, \xi \in \mathfrak{g}^*$ and $g \in G$. Note that the coadjoint action Ad^* is a right action, i.e. $\operatorname{Ad}_{gh}^* = \operatorname{Ad}_h^* \circ \operatorname{Ad}_g^*$. Similarly we define $\operatorname{ad}_X^* \xi \in \mathfrak{g}$ by

$$(\operatorname{ad}_X^*\xi)(Y) \coloneqq \xi(\operatorname{ad}_X(Y)) = \xi([X,Y]) \quad \forall Y \in \mathfrak{g}.$$

For a fixed covector $\mu \in \mathfrak{g}^*$ we define the *coadjoint orbit* $\mathcal{O}_{\mu} \coloneqq \{\operatorname{Ad}_q^*(\mu) \mid g \in G\}$.

- a) Show that the coadjoint orbit \mathcal{O}_{μ} is submanifold of \mathfrak{g}^* , whose tangent space at ν is $\{\operatorname{ad}_X^* \nu \mid X \in \mathfrak{g}\}$. If helpful, you may use without proof, that any closed subgroup H of a Lie group G is a submanifold, and then G/H carries a unique manifold structure, such that the projection $G \to G/H$ is a submersion. Show that Ad^* defines a smooth and transitive action of G on \mathcal{O}_{μ} .
- b) For $\nu \in \mathcal{O}_{\mu}$ and $X, Y \in T_{\nu}\mathcal{O}_{\mu}$ we define

$$\omega_{\nu}: T_{\nu}\mathcal{O}_{\mu} \times T_{\nu}\mathcal{O}_{\mu} \to \mathbb{R}, \quad \omega_{\nu}(\operatorname{ad}_{X}^{*}\nu, \operatorname{ad}_{Y}^{*}\nu) \coloneqq \nu([X, Y]).$$

Show that ω_{ν} is an alternating, non-degenerate bilinear map.

c) Show that this 2-form ω is a *G*-invariant symplectic form on the coadjoint orbit \mathcal{O}_{μ} . In fact, show that ω is closed and that for all $g \in G$ we have $(\operatorname{Ad}_{q}^{*})^{*} \omega = \omega$.