Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, July 10th in the lecture

Exercise Sheet no. 11

Exercise 1 (4 points).
Let G be a smooth manifold and a group. Assume that the group multiplication $m: G \times G \rightarrow$ G is a smooth map. Show that the inversion $\iota: G \rightarrow G$ is also smooth.
Hint: Use the equation $m(\iota(g), g)=e$ for all $g \in G$ and e the neutral element of the group.
Exercise 2 (4 points).
Let $S_{1}, S_{2} \in \mathbb{R}^{n \times n}$ be symmetric matrices. Define for A and B in the Lie algebra $\mathfrak{s o}(n):=$ $\left\{M \in \mathbb{R}^{n \times n} \mid M^{T}=-M\right\}$ given by

$$
\begin{equation*}
\langle A, B\rangle_{S_{1}, S_{2}}:=\operatorname{tr}\left(S_{2} A S_{1} B^{T}\right) . \tag{1}
\end{equation*}
$$

a) Let S_{1} and S_{2} be positive definit. Show that $\langle\cdot, \cdot\rangle_{S_{1}, S_{2}}$ is a scalar product on $\mathfrak{s o}(n)$.
b) Show that for any scalar product $\langle\bullet \cdot, \cdot\rangle$ on $\mathfrak{s o}(3)$, there exists a unique symmetric matrix $S_{3} \in \mathbb{R}^{n \times n}$ with $\langle\cdot, \cdot\rangle_{S_{3}, \text { id }}=\left\langle\langle\cdot, \cdot\rangle\right.$. Is S_{3} always positive definit.
c) Prove the existence of scalar products on $\mathfrak{s o (4)}$ which are not of the form as in eq. (1).
d) Show that every scalar product on $\mathfrak{s o}(n)$ is a sum of scalar products as in eq. (1) with positive definit S_{1} and S_{2}.

Exercise 3 (4 points).
Let G be a Lie group. We consider the adjoint action of G on its Lie algebra:

$$
\mathrm{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g}), g \mapsto\left(X \mapsto \mathrm{~d}_{e} l_{g} \circ \mathrm{~d}_{e} r_{g^{-1}}(X)\right)
$$

where $l, r: G \rightarrow \operatorname{Aut}(G)$ are the left and right multiplication of the group G. Let $\langle\cdot, \cdot\rangle$ be a scalar product on \mathfrak{g}. We say that $\langle\cdot, \cdot\rangle$ is Ad-invariant if $\operatorname{Ad}_{g}^{*}\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle$ holds for any $g \in G$. A tensor (field) on G is called bi-invariant, if it is both left- and right-invariant.
a) Show: a scalar product $\langle\cdot, \cdot\rangle$ on \mathfrak{g} can be extended to a bi-invariant Riemannian metric, if and only if $\langle\cdot, \cdot\rangle$ is Ad-invariant.
b) Assume that we know $\mathrm{d}_{e}(\operatorname{Ad})(X)=\operatorname{ad}_{X}=[X, \cdot]$ for all $X \in T_{e} g=\mathfrak{g}$. Show: if $\langle\cdot, \cdot\rangle$ is Ad-invariant, then ad_{X} is skew-symmetric w.r.t. $\langle\cdot, \cdot\rangle$. Is the converse true as well? Or is it true under additional assumptions?
c) Let γ be a left-invariant Riemannian metric extending the scalar product $\langle\cdot, \cdot\rangle$ on \mathfrak{g}. Show that ad_{X} is skew-symmetric w.r.t. $\langle\cdot, \cdot\rangle$, iff the Levi-Civita connection for γ is given by $\nabla_{X}^{\gamma} Y=\frac{1}{2}[X, Y]$ for all $X, Y \in \mathfrak{g}$. Hint: Use the Koszul formula.
d) Show that the induced Riemannian exponential function and the Lie exponential on G coincide for a biinvariant metric γ.
e) Bonus exercise: Let G be a connected Lie group with a left invariant metric γ. Show that if the induced Riemannian exponential map and the Lie exponential map coincide, then γ is biinvariant.

Exercise 4: Coadjoint orbit (4 points).
Let G be a Lie group and \mathfrak{g} its Lie algebra and $\xi \in \mathfrak{g}^{*}$ be an element in the dual. We have the adjoint action $\mathrm{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g})$ and the induced coadjoint action Ad^{*} given by $\left(\operatorname{Ad}_{g}^{*} \xi\right)(X)=\xi\left(\operatorname{Ad}_{g} X\right)$ for $X \in \mathfrak{g}, \xi \in \mathfrak{g}^{*}$ and $g \in G$. Note that the coadjoint action Ad^{*} is a right action, i.e. $\operatorname{Ad}_{g h}^{*}=\operatorname{Ad}_{h}^{*} \circ \operatorname{Ad}_{g}^{*}$. Similarly we define $\operatorname{ad}_{X}^{*} \xi \in \mathfrak{g}$ by

$$
\left(\operatorname{ad}_{X}^{*} \xi\right)(Y):=\xi\left(\operatorname{ad}_{X}(Y)\right)=\xi([X, Y]) \quad \forall Y \in \mathfrak{g} .
$$

For a fixed covector $\mu \in \mathfrak{g}^{*}$ we define the coadjoint orbit $\mathcal{O}_{\mu}:=\left\{\operatorname{Ad}_{g}^{*}(\mu) \mid g \in G\right\}$.
a) Show that the coadjoint orbit \mathcal{O}_{μ} is submanifold of \mathfrak{g}^{*}, whose tangent space at ν is $\left\{\operatorname{ad}_{X}^{*} \nu \mid X \in \mathfrak{g}\right\}$.
If helpful, you may use without proof, that any closed subgroup H of a Lie group G is a submanifold, and then G / H carries a unique manifold structure, such that the projection $G \rightarrow G / H$ is a submersion.
Show that Ad^{*} defines a smooth and transitive action of G on \mathcal{O}_{μ}.
b) For $\nu \in \mathcal{O}_{\mu}$ and $X, Y \in T_{\nu} \mathcal{O}_{\mu}$ we define

$$
\omega_{\nu}: T_{\nu} \mathcal{O}_{\mu} \times T_{\nu} \mathcal{O}_{\mu} \rightarrow \mathbb{R}, \quad \omega_{\nu}\left(\operatorname{ad}_{X}^{*} \nu, \operatorname{ad}_{Y}^{*} \nu\right):=\nu([X, Y]) .
$$

Show that ω_{ν} is an alternating, non-degenerate bilinear map.
c) Show that this 2 -form ω is a G-invariant symplectic form on the coadjoint orbit \mathcal{O}_{μ}. In fact, show that ω is closed and that for all $g \in G$ we have $\left(\operatorname{Ad}_{g}^{*}\right)^{*} \omega=\omega$.

