Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, July 3th in the lecture

Exercise Sheet no. 10

Exercise 1 (4 points).
Let (M, ω, g, J) be a manifold equipped with a non-degenerated 2-form ω, a Riemannian metric g and an almost complex structure J. Assume that ω and J are compatible with $g=\omega(\cdot, J \cdot)$. Show that if J is g-parallel, i.e. $\nabla^{g} J=0$, then J is integrable and ω is parallel and moreover ω is closed.

Exercise 2 (4 points).
Let P_{1}, \ldots, P_{k} be homogeneous Polynomials in $(n+1)$-variables. Assume that for every point $z \in \mathbb{C}^{n+1} \backslash\{0\}$ with $P_{1}(z)=\ldots=P_{k}(z)=0$ the differentials

$$
\mathrm{d}_{z} P_{1}, \ldots, \mathrm{~d}_{z} P_{k}
$$

are linear independent. Show that subset

$$
\bigcap_{i=1}^{k} P_{i}^{-1}(\{0\}) \subset \mathbb{C} P^{n}
$$

is a complex submanifold.
Exercise 3: Segre embedding (4 points).
Let V, W be finite dimensional complex vector spaces. The map

$$
\begin{aligned}
\iota_{V, W}: \mathbb{P}(V) \times \mathbb{P}(W) & \rightarrow \mathbb{P}(V \otimes W) \\
([v],[w]) & \mapsto[v \otimes w]
\end{aligned}
$$

is called the Segre embedding, where we denote the projectivization of V by $\mathbb{P}(V)=$ $V \backslash\{0\} / \sim$ with the equivalence relation \sim given by: Let $v, w \in V \backslash\{0\}$ be equivalent $v \sim w$ if there exists $\lambda \in \mathbb{C} \backslash\{0\}$ such that $v=\lambda w$. Show:
a) Let M be a complex manifold and $N \subset M$ a real submanifold and assume that the integrable complex structure J^{M} of M preserves the tangent bundle of N, i.e. $J^{M}(T N) \subset T N$, then N is a complex submanifold of M.
b) The map ι is an embedding and the image is a complex submanifold. What is the codimension of the image?

Exercise 4 (4 points).
Let $M^{2 n}$ be a complex manifold with real dimension $2 n$. Recall that the complexified tangent bundle $T_{\mathbb{C}} M$ splits into the $\pm i$-Eigensubbundles of the integrable complex structure J of M, i.e. $T_{\mathbb{C}} M:=T M \otimes_{\mathbb{R}} \mathbb{C}=T^{1,0} M \oplus T^{0,1} M$. Write $\Lambda^{1,0}=T^{1,0} M$ and $\Lambda^{0,1}=T^{0,1} M$. We define $\Lambda^{p, 0}:=\Lambda_{i=1}^{p} \Lambda^{1,0}$ and respectively $\Lambda^{0, q}:=\Lambda_{i=1}^{q} \Lambda^{0,1}$. We have the map

$$
\begin{aligned}
& \iota: \Lambda^{p, 0} \otimes \Lambda^{0, q} \rightarrow \Lambda_{\mathbb{C}}^{k}:=\Lambda^{k} \otimes_{\mathbb{R}} \mathbb{C} \\
& \alpha \otimes \beta \rightarrow \alpha \wedge \beta
\end{aligned}
$$

and set $\Lambda^{p, q}:=\operatorname{image}(\iota)$.
a) Show that $T^{*} M \otimes_{\mathbb{R}} \mathbb{C} \cong\left(T M \otimes_{\mathbb{R}} \mathbb{C}\right)^{*}$ holds.
b) Let $\left(\varphi: U \subset M \rightarrow V \subset \mathbb{C}^{n}, z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right.$) be a complex chart of M such that $T_{\mathbb{C}}^{*} M$ is trivialized over U. Show that $\mathrm{d} z_{1}, \ldots \mathrm{~d} z_{n}, \mathrm{~d} \bar{z}_{1}, \ldots, \mathrm{~d} \bar{z}_{n}$ is a basis of $T_{\mathbb{C}}^{*} U$.
c) Construct an isomorphism $\oplus_{p+q=k} \Lambda^{p, q} \cong \Lambda_{\mathbb{C}}^{k}$.

