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Exercise 1 (4 points).
Let (M,ω, g, J) be a manifold equipped with a non-degenerated 2-form ω, a Riemannian
metric g and an almost complex structure J . Assume that ω and J are compatible with
g = ω( ⋅ , J ⋅ ). Show that if J is g-parallel, i.e. ∇gJ = 0, then J is integrable and ω is parallel
and moreover ω is closed.

Exercise 2 (4 points).
Let P1, . . . , Pk be homogeneous Polynomials in (n + 1)-variables. Assume that for every
point z ∈ Cn+1 ∖ {0} with P1(z) = . . . = Pk(z) = 0 the differentials

dz P1, . . . ,dz Pk

are linear independent. Show that subset

k

⋂
i=1

P −1
i ({0}) ⊂ CP n

is a complex submanifold.

Exercise 3: Segre embedding (4 points).
Let V,W be finite dimensional complex vector spaces. The map

ιV,W ∶P(V ) × P(W )→ P(V ⊗W )

([v], [w])↦ [v ⊗w]

is called the Segre embedding, where we denote the projectivization of V by P(V ) =

V ∖{0}/ ∼ with the equivalence relation ∼ given by: Let v,w ∈ V ∖{0} be equivalent v ∼ w
if there exists λ ∈ C ∖ {0} such that v = λw. Show:

a) Let M be a complex manifold and N ⊂ M a real submanifold and assume that
the integrable complex structure JM of M preserves the tangent bundle of N , i.e.
JM(TN) ⊂ TN , then N is a complex submanifold of M .

b) The map ι is an embedding and the image is a complex submanifold. What is the
codimension of the image?

Exercise 4 (4 points).
Let M2n be a complex manifold with real dimension 2n. Recall that the complexified tan-
gent bundle TCM splits into the ±i-Eigensubbundles of the integrable complex structure
J of M , i.e. TCM ∶= TM ⊗RC = T 1,0M ⊕T 0,1M . Write Λ1,0 = T 1,0M and Λ0,1 = T 0,1M . We
define Λp,0 ∶= ⋀

p
i=1 Λ1,0 and respectively Λ0,q ∶= ⋀

q
i=1 Λ0,1. We have the map

ι∶Λp,0 ⊗Λ0,q → Λk
C ∶= Λk ⊗R C

α⊗ β → α ∧ β

and set Λp,q ∶= image(ι).



a) Show that T ∗M ⊗R C ≅ (TM ⊗R C)
∗ holds.

b) Let (ϕ∶U ⊂ M → V ⊂ Cn, z1, . . . , zn, z̄1, . . . , z̄n) be a complex chart of M such that
T ∗

CM is trivialized over U . Show that dz1, . . .dzn,d z̄1, . . . ,d z̄n is a basis of T ∗

CU .

c) Construct an isomorphism ⊕p+q=k Λp,q ≅ Λk
C.


