Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **July 3th** in the lecture

Exercise Sheet no. 10

Exercise 1 (4 points).

Let (M, ω, g, J) be a manifold equipped with a non-degenerated 2-form ω , a Riemannian metric g and an almost complex structure J. Assume that ω and J are compatible with $g = \omega(\cdot, J \cdot)$. Show that if J is g-parallel, i.e. $\nabla^g J = 0$, then J is integrable and ω is parallel and moreover ω is closed.

Exercise 2 (4 points).

Let P_1, \ldots, P_k be homogeneous Polynomials in (n + 1)-variables. Assume that for every point $z \in \mathbb{C}^{n+1} \setminus \{0\}$ with $P_1(z) = \ldots = P_k(z) = 0$ the differentials

$$d_z P_1, \ldots, d_z P_k$$

are linear independent. Show that subset

$$\bigcap_{i=1}^k P_i^{-1}(\{0\}) \subset \mathbb{C}P^n$$

is a complex submanifold.

Exercise 3: Segre embedding (4 points). Let V, W be finite dimensional complex vector spaces. The map

$$\iota_{V,W}: \mathbb{P}(V) \times \mathbb{P}(W) \to \mathbb{P}(V \otimes W)$$
$$([v], [w]) \mapsto [v \otimes w]$$

is called the *Segre embedding*, where we denote the projectivization of V by $\mathbb{P}(V) = V \setminus \{0\}/\sim$ with the equivalence relation ~ given by: Let $v, w \in V \setminus \{0\}$ be equivalent $v \sim w$ if there exists $\lambda \in \mathbb{C} \setminus \{0\}$ such that $v = \lambda w$. Show:

- a) Let M be a complex manifold and $N \subset M$ a real submanifold and assume that the integrable complex structure J^M of M preserves the tangent bundle of N, i.e. $J^M(TN) \subset TN$, then N is a complex submanifold of M.
- b) The map ι is an embedding and the image is a complex submanifold. What is the codimension of the image?

Exercise 4 (4 points).

Let M^{2n} be a complex manifold with real dimension 2n. Recall that the complexified tangent bundle $T_{\mathbb{C}}M$ splits into the $\pm i$ -Eigensubbundles of the integrable complex structure J of M, i.e. $T_{\mathbb{C}}M \coloneqq TM \otimes_{\mathbb{R}} \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$. Write $\Lambda^{1,0} = T^{1,0}M$ and $\Lambda^{0,1} = T^{0,1}M$. We define $\Lambda^{p,0} \coloneqq \bigwedge_{i=1}^{p} \Lambda^{1,0}$ and respectively $\Lambda^{0,q} \coloneqq \bigwedge_{i=1}^{q} \Lambda^{0,1}$. We have the map

$$\iota: \Lambda^{p,0} \otimes \Lambda^{0,q} \to \Lambda^k_{\mathbb{C}} \coloneqq \Lambda^k \otimes_{\mathbb{R}} \mathbb{C}$$
$$\alpha \otimes \beta \to \alpha \wedge \beta$$

and set $\Lambda^{p,q} \coloneqq \operatorname{image}(\iota)$.

- a) Show that $T^*M \otimes_{\mathbb{R}} \mathbb{C} \cong (TM \otimes_{\mathbb{R}} \mathbb{C})^*$ holds.
- b) Let $(\varphi: U \subset M \to V \subset \mathbb{C}^n, z_1, \dots, z_n, \overline{z}_1, \dots, \overline{z}_n)$ be a complex chart of M such that $T^*_{\mathbb{C}}M$ is trivialized over U. Show that $dz_1, \dots, dz_n, d\overline{z}_1, \dots, d\overline{z}_n$ is a basis of $T^*_{\mathbb{C}}U$.
- c) Construct an isomorphism $\bigoplus_{p+q=k} \Lambda^{p,q} \cong \Lambda^k_{\mathbb{C}}$.