Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **June 26th** in the lecture

Exercise Sheet no. 9

Exercise 1 (4 points).

Let (M, ω) be a symplectic manifold and recall that the Poisson bracket is given by $\{f, g\} \coloneqq \omega(\operatorname{sgrad} f, \operatorname{sgrad} g)$. Show that in Darboux coordinates $(U, (q_i, p_i))$, i.e. $\omega_{|U} = \sum_i dp_i \wedge dq_i$ holds, the Poisson bracket $\{f, g\}$ can be written as

$$\sum_{i} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}$$

Exercise 2 (4 points).

We consider the following complex structures on \mathbb{C}^2

$$I_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \qquad I_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad I_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

and define $J \coloneqq \sum_{k=1}^{3} f_k I_k$ for constants $f_k \in \mathbb{R}$ with the condition $f_1^2 + f_2^2 + f_3^2 = 1$.

- a) For which $(f_k)_k$ is the structure J a compatible complex structure for the symplectic form $\omega = -\Im \mathfrak{m}(\langle \cdot, \cdot \rangle_{\mathbb{C}^2})$?
- b) For which $(f_k)_k$ is the structure J a compatible complex structure for the symplectic form $\omega = -\Im \mathfrak{m}(\langle I_1 \cdot , \cdot \rangle_{\mathbb{C}^2})$?
- Bonus: Consider the almost complex structure $J \coloneqq \sum_{k=1}^{3} f_k I_k$ on the symplectic manifold $(\mathbb{C}^2, \omega_{\text{std}})$ with functions $f_k \colon \mathbb{C}^2 \to \mathbb{R}$ which satisfy the constraint $f_1^2 + f_2^2 + f_3^2 = 1$ on \mathbb{C}^2 . Show that J is an integrable almost complex structure iff f_k is constant for all k.

Exercise 3 (4 points).

Show that the space of all complex structure on \mathbb{C}^n , which are compatible with the standard scalar product, is given by the space

Show moreover, that for the case n = 2 this space can be identified with

$$S^2 \sqcup S^2$$
.

Exercise 4 (4 points). Consider the map

$$f: \mathbb{R}^4 \smallsetminus \{0\} \to \mathbb{R}^4 \smallsetminus \{0\}$$
$$x \to \frac{x}{\|x\|^2}$$

and a complex linear structure $J \in \text{End}(\mathbb{R}^4)$.

- a) Show that the pullback $J_f \coloneqq f^*J$ is a complex structure on $\mathbb{R}^4 \setminus \{0\}$. Is there an extension of J_f to all of \mathbb{R}^4 ?
- b) Let ∂_r the radial vector on $\mathbb{R}^4 \setminus \{0\}$. We decompose the space $\alpha : \mathbb{R}^4 \setminus \{0\} \cong S^3 \times \mathbb{R}_{>0}, x \mapsto (\frac{x}{\|x\|}, \|x\|)$ and thus also the tangent bundle as

$$\mathrm{d}\alpha: T_p \mathbb{R}^4 \smallsetminus \{0\} \to T_{p/\|p\|} S^3 \oplus T_{\|p\|} \mathbb{R}_{>0},$$

Show there exists a vector field $X \in \Gamma(TS^3)$, s.t. $(\partial_r, J\partial_r, X, JX)$ is an orthonormal frame of $T\mathbb{R}^4 \setminus \{0\}_{|S^3}$. Show moreover that df can be decomposed as

$$\mathrm{d}\alpha\circ\mathrm{d}f\circ\mathrm{d}\alpha^{-1}=\mathrm{id}_{T_{\varphi_p}S^3}\oplus-\mathrm{id}_{T_1\mathbb{R}_{>0}}$$

for a point $p \in S^3$.

- c) Show that the commutator of the $[J, J_f] = 0$ vanishes. Bonus: Can you generalize the argument for arbitrary linear complex structures $J_1, J_2 \in \text{End}(\mathbb{R}^4)$, which induce different orientations on \mathbb{R}^4 ?
- d) We consider the restricted map J_f on the bundle $\pi^{S^3} \colon \mathbb{R}^4 \times S^3 \to S^3$. Show that for every point $p \in S^3$, the map J_f is constant along a Hopf circle $C_p \coloneqq S^3 \cap \operatorname{span}\{\partial_r, J_f \partial_r\}_p$.
- e) Let $H: S^3 \to \mathbb{C}P^1$ be the quotient map. Let $[p] = L \in \mathbb{C}P^1$ be a complex line and define the following map:

$$\varphi: \mathbb{C}P^1 \to S^2$$
$$[p] \mapsto J(C_p),$$

where $J(C_p)$ is induced complex structure on \mathbb{R}^4 given by $(\partial_r, J_f \partial_r, X, J_f X)$. Show that φ is a diffeomorphism.