Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, June 26th in the lecture

Exercise Sheet no. 9

Exercise 1 (4 points).
Let (M, ω) be a symplectic manifold and recall that the Poisson bracket is given by $\{f, g\}:=\omega(\operatorname{sgrad} f, \operatorname{sgrad} g)$. Show that in Darboux coordinates $\left(U,\left(q_{i}, p_{i}\right)\right)$, i.e. $\omega_{\mid U}=$ $\sum_{i} \mathrm{~d} p_{i} \wedge \mathrm{~d} q_{i}$ holds, the Poisson bracket $\{f, g\}$ can be written as

$$
\sum_{i} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}
$$

Exercise 2 (4 points).
We consider the following complex structures on \mathbb{C}^{2}

$$
I_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad I_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad I_{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

and define $J:=\sum_{k=1}^{3} f_{k} I_{k}$ for constants $f_{k} \in \mathbb{R}$ with the condition $f_{1}^{2}+f_{2}^{2}+f_{3}^{2}=1$.
a) For which $\left(f_{k}\right)_{k}$ is the structure J a compatible complex structure for the symplectic form $\omega=-\Im \mathfrak{m}\left(\langle\cdot \cdot,\rangle_{\mathbb{C}^{2}}\right)$?
b) For which $\left(f_{k}\right)_{k}$ is the structure J a compatible complex structure for the symplectic form $\omega=-\mathfrak{I m}\left(\left\langle I_{1} \cdot,\right\rangle_{\mathbb{C}^{2}}\right)$?

Bonus: Consider the almost complex structure $J:=\sum_{k=1}^{3} f_{k} I_{k}$ on the symplectic manifold ($\mathbb{C}^{2}, \omega_{\text {std }}$) with functions $f_{k}: \mathbb{C}^{2} \rightarrow \mathbb{R}$ which satisfy the constraint $f_{1}^{2}+f_{2}^{2}+f_{3}^{2}=1$ on \mathbb{C}^{2}. Show that J is an integrable almost complex structure iff f_{k} is constant for all k.

Exercise 3 (4 points).
Show that the space of all complex structure on \mathbb{C}^{n}, which are compatible with the standard scalar product, is given by the space

$$
\mathrm{O}(2 n) / \mathrm{U}(n)
$$

Show moreover, that for the case $n=2$ this space can be identified with

$$
S^{2} \sqcup S^{2} .
$$

Exercise 4 (4 points).
Consider the map

$$
\begin{aligned}
f: \mathbb{R}^{4} \backslash\{0\} & \rightarrow \mathbb{R}^{4} \backslash\{0\} \\
x & \rightarrow \frac{x}{\|x\|^{2}}
\end{aligned}
$$

and a complex linear structure $J \in \operatorname{End}\left(\mathbb{R}^{4}\right)$.
a) Show that the pullback $J_{f}:=f^{*} J$ is a complex structure on $\mathbb{R}^{4} \backslash\{0\}$. Is there an extension of J_{f} to all of \mathbb{R}^{4} ?
b) Let ∂_{r} the radial vector on $\mathbb{R}^{4} \backslash\{0\}$. We decompose the space $\alpha: \mathbb{R}^{4} \backslash\{0\} \cong S^{3} \times \mathbb{R}_{>0}, x \mapsto$ $\left(\frac{x}{\|x\|},\|x\|\right)$ and thus also the tangent bundle as

$$
\mathrm{d} \alpha: T_{p} \mathbb{R}^{4} \backslash\{0\} \rightarrow T_{p /\|p\|} S^{3} \oplus T_{\|p\|} \mathbb{R}_{>0}
$$

Show there exists a vector field $X \in \Gamma\left(T S^{3}\right)$, s.t. $\left(\partial_{r}, J \partial_{r}, X, J X\right)$ is an orthonormal frame of $T \mathbb{R}^{4} \backslash\{0\}_{\mid S^{3}}$. Show moreover that $\mathrm{d} f$ can be decomposed as

$$
\mathrm{d} \alpha \circ \mathrm{~d} f \circ \mathrm{~d} \alpha^{-1}=\mathrm{id}_{T_{\varphi_{p}} S^{3}} \oplus-\mathrm{id}_{T_{1} \mathbb{R}_{>0}}
$$

for a point $p \in S^{3}$.
c) Show that the commutator of the $\left[J, J_{f}\right]=0$ vanishes. Bonus: Can you generalize the argument for arbitrary linear complex structures $J_{1}, J_{2} \in \operatorname{End}\left(\mathbb{R}^{4}\right)$, which induce different orientations on \mathbb{R}^{4} ?
d) We consider the restricted map J_{f} on the bundle $\pi^{S^{3}}: \mathbb{R}^{4} \times S^{3} \rightarrow S^{3}$. Show that for every point $p \in S^{3}$, the map J_{f} is constant along a Hopf circle $C_{p}:=S^{3} \cap \operatorname{span}\left\{\partial_{r}, J_{f} \partial_{r}\right\}_{p}$.
e) Let $H: S^{3} \rightarrow \mathbb{C} P^{1}$ be the quotient map. Let $[p]=L \in \mathbb{C} P^{1}$ be a complex line and define the following map:

$$
\begin{aligned}
\varphi: \mathbb{C} P^{1} & \rightarrow S^{2} \\
{[p] } & \mapsto J\left(C_{p}\right),
\end{aligned}
$$

where $J\left(C_{p}\right)$ is induced complex structure on \mathbb{R}^{4} given by ($\partial_{r}, J_{f} \partial_{r}, X, J_{f} X$). Show that φ is a diffeomorphism.

