Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **June 19th** in the lecture

Exercise Sheet no. 8

Exercise 1: conformal symplectic maps (4 points).

Let (M_1, ω_1) and (M_2, ω_2) be a symplectic manifolds. A smooth map $f: M_1 \to M_2$ is called a *conformal symplectic map* if there exists a smooth function $h: M_1 \to \mathbb{R}$ with

$$f^*\omega_2 = h \cdot \omega_1$$
 .

- a) Show that if the dimension of M_1 is strictly bigger than 2, then the factor h is locally constant.
- b) Find conformal symplectic maps for $M_1 = M_2 = \mathbb{R}^{2n}$ and n > 1, s.t. the conformal factor h is 0 or ± 1 .
- c) Find a conformal symplectic map of $M_1 = M_2 = S^2$ s.t. the conformal factor is non-constant.
- d) Bonus: Let $h \in C^{\infty}(S^2)$ be given. Can you find a conformal symplectic map $f: S^2 \to S^2$ with conformal factor h?

Exercise 2 (4 points). We consider the following map

$$\iota: (B_1(0), \omega_{\text{std}}) \to (\mathbb{C}P^1, \omega_{\text{FS}})$$
$$z \mapsto [z: \sqrt{1 - |z|^2}],$$

where $B_1(0) \subset \mathbb{C}$ is the standard open ball of radius 1 in the complex plane and the induced standard symplectic form of \mathbb{C} . The symplectic form ω_{FS} is the Fubini-Study form introduced on Exercise sheet 7, Ex. 4.

Show that the image of ι is open and dense, and that ι is a symplectomorphism on its image.

Exercise 3: Calibrations (4 points).

Let $G \subset \mathbb{C}$ be open, bounded and non-empty subset of the complex plane with smooth boundary.

a) Show the following inequality for all $X, Y \in \mathbb{R}^{2n}$:

$$\omega_{\rm std}(X,Y)^2 \leq \langle X,X \rangle \langle Y,Y \rangle - \langle X,Y \rangle^2,$$

where ω_{std} is the standard symplectic form on \mathbb{R}^{2n} . Moreover, the equality case in the inequality case holds iff X, Y are linear dependent.

b) Let $F:\overline{G} \to \mathbb{C}^n$ be a smooth map. Show the Wirtinger inequality, i.e.

$$\int_{G} F^* \omega_{\text{std}} \leq \operatorname{area}(F(G)) \coloneqq \int_{G} \sqrt{\langle \partial_x F, \partial_x F \rangle \langle \partial_y F, \partial_y F \rangle - \langle \partial_x F, \partial_y F \rangle^2} \, \mathrm{d}x \, \mathrm{d}y.$$

The equality case holds iff the map F is holomorphic on G.

c) Let $H : \overline{G} \times [0,1] \to \mathbb{C}^n$ be a homotopy of smooth maps which fixes the boundary of G, i.e. $H(t,x) = F_0(x)$ for all $x \in \partial G$ and $t \in [0,1]$, where we write $F_i \coloneqq H(i,\cdot)$ for i = 0, 1. Assume that F_0 is holomorphic on G. Show that:

 $\operatorname{area}(F_1(G)) \ge \operatorname{area}(F_0(G)).$

Hint: One can use that the homotopy H given as above satisfies $\int_G F_0^* \omega_{std} = \int_G F_1^* \omega_{std}$.

Exercise 4: Action-angle coordinates (4 points). Let $E = (E_1, \ldots, E_k) \in \mathbb{R}^k$. We call a Hamiltonian system (M^{2k}, ω, H) integrable if there exist smooth function $H_1 = H, H_2, \ldots, H_k$ on M, s.t.

- i) The Poisson-brackets vanish, i.e. $\{H_i, H_j\} = 0$ for all $i, j \in \{1, \dots, k\}$,
- ii) For all points $x \in N_E \coloneqq \{y \mid H_i(y) = E_i \text{ for all } i \in \{1, \dots, k\}\}$ the symplectic gradients sgrad $H_1, \dots,$ sgrad H_k are linear independent at x.

Assume that N_E is non-empty, compact and connected and let $x_0 \in N_E$.

a) Show that the map

$$F_{x_0}: \mathbb{R}^k \to M, (t_1, \dots, t_k) \mapsto \Phi_{t_1}^{H_1} \circ \dots \circ \Phi_{t_k}^{H_k}(x_0)$$

is well-defined and an immersion. Moreover the image of F is given by image(F) = N_E .

- b) The preimage $F_{x_0}^{-1}(x_0)$ is a discrete and closed subgroup of \mathbb{R}^k , which is generated by linear independent elements $v_1 \dots, v_k \in \mathbb{R}^k$.
- c) Construct a diffeomorphism $G: T^k := \mathbb{R}^k / \mathbb{Z}^k \to N_E$, s.t. there exist $w_0, w_1 \in \mathbb{R}^k$ with $\Phi_t^H(x_0) = G([w_0 + tw_1]).$
- d) Let $C := \overline{\{\Phi_t^H(x_0) \mid t \in \mathbb{R}\}}$ be the trajectory of the gradient flow of H. Show that $G^{-1}(C) \subset T^k$ is a closed submanifold. Determine all possible dimensions of C for different Hamiltonian systems (M, ω, H) .