Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, June 12th in the lecture

Exercise Sheet no. 7

Exercise 1 (4 points).
Let (V, ω) be a $2 n$-dimensional symplectic vector space and $L \subset V$ be a Lagrangian subspace.
a) Let v_{1}, \ldots, v_{n} be a basis of L. Show that there exist $w_{1}, \ldots, w_{n} \in V$, s.t. $\left(v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right)$ is a symplectic basis of V, i.e.,

$$
\begin{aligned}
\omega\left(v_{i}, v_{j}\right) & =\omega\left(w_{i}, w_{j}\right)=0 \\
\omega\left(v_{i}, w_{j}\right) & =\delta_{i j}
\end{aligned}
$$

holds.
b) Show that for every Lagrangian subspace $L \subset V$, there exists a Lagrangian complement, i. e., $L^{\prime} \subset V$ a Lagrangian subspace with $L \oplus L^{\prime}=V$.
c) We call a map $J: V \rightarrow V$ a compatible complex structure for ω if $J^{2}=-\mathrm{id}_{V}$ holds and $g:=\omega(\cdot, J \cdot)$ is a scalar product on V. Show that if $L \subset V$ is a Lagrangian subspace, then $L^{\prime}:=J(L)$ is Lagrangian complement for L.

Exercise 2: Hamiltonian action (4 points).
Let (M, ω) be a symplectic manifold. Let $H_{1}, \ldots, H_{k}: M \rightarrow \mathbb{R}$ be Hamiltonian functions on M with compact support. We assume that

$$
\left\{H_{i}, H_{j}\right\}=0
$$

holds for all $i, j=1, \ldots, k$.
a) Show the induced flows of the Hamiltonians commute, i.e.,

$$
\Phi_{t}^{H_{i}} \circ \Phi_{t}^{H_{j}}=\Phi_{t}^{H_{j}} \circ \Phi_{t}^{H_{i}} .
$$

b) Show that the following map is well-defined

$$
\begin{aligned}
\mathbb{R}^{k} & \rightarrow \operatorname{Ham}_{c}(M, \omega) \\
\left(t_{1}, \ldots, t_{k}\right) & \mapsto \Phi_{t_{1}}^{H_{1}} \circ \ldots \circ \Phi_{t_{k}}^{H_{k}},
\end{aligned}
$$

and show that it is a group homomorphism.

Exercise 3 (4 points).
We consider the two-dimensional sphere as a symplectic manifold $\left(S^{2}, \omega_{S^{2}}\right)$, where the symplectic form is given by

$$
\omega_{S^{2}, p}(v, w)=\langle p, v \times w\rangle_{\mathbb{R}^{3}}
$$

with $p \in S^{2}$ and $v, w \in T_{p} S^{2}=p^{\perp}$.
a) For $H_{i}=x_{i}$ with $i=1,2,3$ determine the induced flows $\Phi_{t}^{H_{i}}$ for all times $t \in \mathbb{R}$.
b) Show that any element $A \in \mathrm{SO}(3)$ acts as a Hamiltonian diffeomorphism on $\left(S^{2}, \omega_{S^{2}}\right)$.
c) Let $x_{i}: S^{2} \rightarrow \mathbb{R}$ be the coordinate functions of the sphere for $i=1,2,3$. Show that the Poisson bracket of these functions satisfies

$$
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j k} x_{k},
$$

where $\epsilon_{i j k}$ is the Levi-Civita symbol. Hint: Work in spherical coordinates.
Exercise 4: Harmonic oscillator (4 points).
We consider the complex projective space $\mathbb{C} P^{n}$ and the following maps

$$
\begin{aligned}
i: S^{2 n+1} & \rightarrow \mathbb{C}^{n+1} \\
\pi: S^{2 n+1} & \rightarrow \mathbb{C} P^{n}
\end{aligned}
$$

with i the inclusion and π the quotient map.
a) Let $H: \mathbb{C}^{n+1} \rightarrow \mathbb{R}, z \mapsto \frac{1}{2}\langle z, z\rangle_{\mathbb{C}^{n+1}}$. Show that $\operatorname{sgrad} H_{\mid z}=-i \cdot z$ holds.
b) Determine the trajectories of the Hamiltonian system $\left(\mathbb{C}^{n+1}, \omega_{\mathrm{st}}, H\right)$.
c) Show that there exists a unique symplectic form on $\mathbb{C} P^{n}$ called the Fubini-Study form, s.t. $i^{*} \omega_{\mathrm{st}}=\pi^{*} \omega_{\mathrm{FS}}$ holds.

