Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **June 5th** in the lecture

Exercise Sheet no. 6

Exercise 1: *Electromagnetic field* (4 points).

The Lagrangian of a charged particle in an electromagnetic field is given by

$$L(x,v,t) \coloneqq \frac{1}{2}m\|v\|^2 + e\langle A(x,t),v\rangle - e\phi(x,t),$$

where $m, e \in \mathbb{R}_{>0}$, $x, v \in \mathbb{R}^3$, $t \in (a, b)$, and both $A: \mathbb{R}^3 \times (a, b) \to \mathbb{R}^3$ and $\phi: \mathbb{R}^3 \times (a, b) \to \mathbb{R}$ are smooth.

- a) Determine the Euler-Lagrange equation associated to L.
- b) Calculate the Hamilton function belonging to L.

Exercise 2: Symplectic maps (4 points).

Let (M_1, ω_1) and (M_2, ω_2) be symplectic manifolds. Denote by $\pi_i: M_1 \times M_2 \to M_i$, i = 1, 2, the canonical projections. Let furthermore $f: M_1 \to M_2$ be a smooth map.

- a) Show that $\omega_W \coloneqq \pi_1^* \omega_1 \pi_2^* \omega_2$ is a symplectic form on $W \coloneqq M_1 \times M_2$.
- b) We consider the graph of f,

$$\operatorname{Graph}(f) \coloneqq \{(x, y) \in W \mid y = f(x)\} \subset W.$$

Show that the tangent space of $\operatorname{Graph}(f)$ in $(x, y) \in \operatorname{Graph}(f)$ is given by

$$T_{(x,y)}\operatorname{Graph}(f) = \{(v, d_x f(v)) \mid v \in T_x M_1\} \subset T_x M_1 \times T_y M_2 = T_{(x,y)} W.$$

Hint: Here, you may use without proof that for a smooth map $f: M \to N$ between smooth manifolds the following holds: The graph of f is a smooth submanifold of $M \times N$ and the map $\mathrm{id} \times f: M \to M \times N$, $x \mapsto (x, f(x))$ is a diffeomorphism onto the graph of f.

c) Conclude that the map $f: M_1 \to M_2$ is symplectic, i.e. $f^*\omega_2 = \omega_1$, if and only if Graph(f) is an isotropic submanifold of W, i.e. $T_{(x,y)}$ Graph(f) is an isotropic subspace of $T_{(x,y)}W$ for all $(x,y) \in$ Graph(f).

Exercise 3: Poisson bracket (4 points).

Let (M, ω) be a symplectic manifold. For two functions $f, g \in C^{\infty}(M)$, we define their *Poisson bracket* by $\{f, g\} \coloneqq \omega(\operatorname{sgrad} f, \operatorname{sgrad} g) \in C^{\infty}(M)$, where sgrad denotes the symplectic gradient defined in Exercise 1 on Sheet 4.

a) Show that for any 2-form $\alpha \in \Omega^2(M)$ and all vector fields $X, Y, Z \in \Gamma(TM)$ the following formula holds:

$$d\alpha(X, Y, Z) = \partial_X \alpha(Y, Z) + \partial_Y \alpha(Z, X) + \partial_Z \alpha(X, Y) - \alpha([Y, Z], X) - \alpha([Z, X], Y) - \alpha([X, Y], Z).$$

Hint: Apply Cartan's formula twice – once for 2-forms and once for 1-forms.

b) Prove that for all $f, g, h \in C^{\infty}(M)$

 $0 = -d\omega(\operatorname{sgrad} f, \operatorname{sgrad} g, \operatorname{sgrad} h) = \{\{f, g\}, h\} + \{\{g, h\}, f\} + \{\{h, f\}, g\}.$