Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, June 5th in the lecture

Exercise Sheet no. 6

Exercise 1: Electromagnetic field (4 points).
The Lagrangian of a charged particle in an electromagnetic field is given by

$$
L(x, v, t):=\frac{1}{2} m\|v\|^{2}+e\langle A(x, t), v\rangle-e \phi(x, t)
$$

where $m, e \in \mathbb{R}_{>0}, x, v \in \mathbb{R}^{3}, t \in(a, b)$, and both $A: \mathbb{R}^{3} \times(a, b) \rightarrow \mathbb{R}^{3}$ and $\phi: \mathbb{R}^{3} \times(a, b) \rightarrow \mathbb{R}$ are smooth.
a) Determine the Euler-Lagrange equation associated to L.
b) Calculate the Hamilton function belonging to L.

Exercise 2: Symplectic maps (4 points).
Let $\left(M_{1}, \omega_{1}\right)$ and $\left(M_{2}, \omega_{2}\right)$ be symplectic manifolds. Denote by $\pi_{i}: M_{1} \times M_{2} \rightarrow M_{i}, i=1,2$, the canonical projections. Let furthermore $f: M_{1} \rightarrow M_{2}$ be a smooth map.
a) Show that $\omega_{W}:=\pi_{1}^{*} \omega_{1}-\pi_{2}^{*} \omega_{2}$ is a symplectic form on $W:=M_{1} \times M_{2}$.
b) We consider the graph of f,

$$
\operatorname{Graph}(f):=\{(x, y) \in W \mid y=f(x)\} \subset W .
$$

Show that the tangent space of $\operatorname{Graph}(f)$ in $(x, y) \in \operatorname{Graph}(f)$ is given by

$$
T_{(x, y)} \operatorname{Graph}(f)=\left\{\left(v, d_{x} f(v)\right) \mid v \in T_{x} M_{1}\right\} \subset T_{x} M_{1} \times T_{y} M_{2}=T_{(x, y)} W .
$$

Hint: Here, you may use without proof that for a smooth map $f: M \rightarrow N$ between smooth manifolds the following holds: The graph of f is a smooth submanifold of $M \times N$ and the map id $\times f: M \rightarrow M \times N, x \mapsto(x, f(x))$ is a diffeomorphism onto the graph of f.
c) Conclude that the map $f: M_{1} \rightarrow M_{2}$ is symplectic, i. e. $f^{*} \omega_{2}=\omega_{1}$, if and only if $\operatorname{Graph}(f)$ is an isotropic submanifold of W, i.e. $T_{(x, y)} \operatorname{Graph}(f)$ is an isotropic subspace of $T_{(x, y)} W$ for all $(x, y) \in \operatorname{Graph}(f)$.

Exercise 3: Poisson bracket (4 points).
Let (M, ω) be a symplectic manifold. For two functions $f, g \in C^{\infty}(M)$, we define their Poisson bracket by $\{f, g\}:=\omega(\operatorname{sgrad} f, \operatorname{sgrad} g) \in C^{\infty}(M)$, where sgrad denotes the symplectic gradient defined in Exercise 1 on Sheet 4.
a) Show that for any 2 -form $\alpha \in \Omega^{2}(M)$ and all vector fields $X, Y, Z \in \Gamma(T M)$ the following formula holds:

$$
\begin{aligned}
\mathrm{d} \alpha(X, Y, Z)= & \partial_{X} \alpha(Y, Z)+\partial_{Y} \alpha(Z, X)+\partial_{Z} \alpha(X, Y) \\
& -\alpha([Y, Z], X)-\alpha([Z, X], Y)-\alpha([X, Y], Z) .
\end{aligned}
$$

Hint: Apply Cartan's formula twice - once for 2-forms and once for 1-forms.
b) Prove that for all $f, g, h \in C^{\infty}(M)$

$$
0=-\mathrm{d} \omega(\operatorname{sgrad} f, \operatorname{sgrad} g, \operatorname{sgrad} h)=\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}
$$

