Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, May 22nd in the lecture

Exercise Sheet no. 5

Exercise 1: Symplectic orthogonal complement (4 points).
Let (V, ω) be a $2 n$-dimensional symplectic vector space, i. e. a $2 n$-dimensional real vector space V together with an anti-symmetric non-degenerate bilinear form $\omega: V \times V \rightarrow \mathbb{R}$. Let $E \subset V$ be a linear subspace. We define the symplectic orthogonal complement of E in V as

$$
E^{\perp \omega}:=\{v \in V \mid \omega(v, w)=0 \text { for all } w \in E\} .
$$

Show the following:
a) $E^{\perp \omega}$ is a linear subspace of V.
b) The following dimension formula holds: $\operatorname{dim} E+\operatorname{dim} E^{{ }^{\omega}}=2 n$.
c) $\left(E^{\perp \omega}\right)^{\perp \omega}=E$.

Exercise 2: Isotorpic, Lagrangian and symplectic subspaces (4 points).
Let again (V, ω) be a $2 n$-dimensional symplectic vector space. A linear subspace $E \subset V$ is called isotropic if $E \subset E^{\perp \omega}$ and Lagrangian if $E=E^{\perp \omega}$. It is symplectic if $E \cap E^{\perp \omega}=\{0\}$. Show that the following holds fo any linear subspace $E \subset V$:
a) E is isotropic if and only if $\left.\omega\right|_{E \times E} \equiv 0$. In particular, E is Lagrangian if and only if $\operatorname{dim} E=n$ and $\left.\omega\right|_{E \times E} \equiv 0$.
b) E is symplectic if and only if $E^{\perp \omega}$ is symplectic.
c) E is symplectic if and only if $E+E^{\perp \omega}=V$.
d) E is symplectic if and only if the bilinear form $\left.\omega\right|_{E \times E}$ is non-degenderate.

Exercise 3: Legendre transformation geometrically (4 points).
Let V be a finite-dimensional real vector space, $\Omega \subset V$ a convex open subset and $L: \Omega \rightarrow \mathbb{R}$ a smooth convex function. Assume that $\mathrm{d} L: \Omega \rightarrow \Omega^{*}, v \mapsto \mathrm{~d}_{v} L$ is a diffeomorphism onto its image $\Omega^{*} \subset V^{*}$, so that its Legendre transformation $H=\mathbb{L}(L): \Omega^{*} \rightarrow \mathbb{R}$ is well-defined.
a) Show that for all $p \in \Omega^{*}$

$$
\begin{equation*}
H(p)=-\sup \{c \in \mathbb{R} \mid p(v)+c \leq L(v) \text { for all } v \in \Omega\} . \tag{1}
\end{equation*}
$$

b) Graphically illustrate the procedure (1) for obtaining the Legendre transformation, in the case $\operatorname{dim} V=1$.
c) Show that $\operatorname{Hess}_{p} H=\left(\operatorname{Hess}_{v} L\right)^{-1}$ for $p=\mathrm{d}_{v} L \in \Omega^{*}$.

Exercise 4: Conserved quantities arising from Noether's theorem (4 points).
For $n \in \mathbb{N}$, a function $E_{\mathrm{pot}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a non-degenerate symmetric matrix $M \in \mathbb{R}^{n \times n}$, we consider the Lagrangian

$$
\begin{aligned}
L: T \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
T_{q} \mathbb{R}^{n} \ni(q, v) & \longmapsto \frac{1}{2}\langle v, M v\rangle-E_{\mathrm{pot}}(q) .
\end{aligned}
$$

a) Assume that $n=3 k, M=\operatorname{diag}\left(m_{1} I_{3}, \ldots, m_{k} I_{3}\right)$ and $E_{\text {pot }}$ is translationally symmetric in the following sense:

$$
E_{p o t}\left(q_{1}, \ldots q_{k}\right)=E_{p o t}\left(q_{1}+a, \ldots, q_{k}+a\right)
$$

for all $q_{1}, \ldots q_{k} \in \mathbb{R}^{3}$ and all $a \in \mathbb{R}^{3}$. Determine the conserved momenta associated to the translational symmetry.
b) Assume that $n=3, M=m I_{3}$ and $E_{\text {pot }}$ is rotationally symmetric:

$$
E_{p o t}(q)=E_{p o t}(A q)
$$

for all $q \in \mathbb{R}^{3}$ and all $A \in \mathrm{SO}(3)$. Determine the conserved momenta associated to the rotational symmetry. Compare your result to Exercise 1 on Sheet 1.

