Symplectic Geometry and Classical Mechanics: Exercises

Exercise Sheet no. 4

Exercise 1: Symplectic gradient (4 points).

Let (M, ω) be a symplectic manifold, i.e. a pair of a smooth manifold M and a closed non-degenerate 2-form $\omega \in \Omega^2(M)$. Let furthermore $f \in C^{\infty}(M)$ be a smooth function on M.

- a) Show that there exists a unique vector field $X \in \Gamma(TM)$, called sympectic gradient of f, such that $df = \omega(X, -)$.
- b) Let $\phi: M \times \mathbb{R} \supset \mathcal{D} \rightarrow M$, $(p, t) \mapsto \phi_t(p)$ be a local flow of X (cf. Exercise 1 on Sheet 2). Show that ω is preserved by the flow, i.e. $(\phi_t^* \omega)_{|p} = \omega_{|p}$ for $(p, t) \in \mathcal{D}$.

Exercise 2: Canonical symplectic structure (4 points).

Let M be a smooth manifold and $\pi_{T^*M}: T^*M \to M$ be the cotangent bundle of M with its tangent bundle $\pi_{TT^*M}: TT^*M \to T^*M$. For $\alpha \in T_p^*M$ let $d_{\alpha}\pi_{T^*M}: T_{\alpha}T^*M \to T_pM$ be the differential of π_{T^*M} at α . We define $\lambda_{can} \in \Omega^1(T^*M)$ as follows: for $X \in T_{\alpha}T^*M$, with $\alpha \in T^*M$, we set

$$\lambda_{\operatorname{can}}(X) \coloneqq \alpha(\operatorname{d}_{\alpha} \pi_{T^*M}(X)).$$

Denote by $q: M \supset U \rightarrow V \subset \mathbb{R}^n$ be a chart of M.

a) Show that

$$(p,q):\pi_{T^*M}^{-1}(U) \longrightarrow \mathbb{R}^n \times V$$
$$\alpha \longmapsto \left(\alpha \left(\frac{\partial}{\partial q^1}\right), \dots, \alpha \left(\frac{\partial}{\partial q^n}\right), q^1(\pi_{T^*M}(\alpha)), \dots, q^n(\pi_{T^*M}(\alpha))\right)$$

defines a chart of T^*M .

- b) Show that λ_{can} is well-defined and prove that $\lambda_{\text{can}} = \sum_{i=1}^{n} p_i dq^i$ in the chart $(p,q) = (p_1, \ldots, p_n, q^1, \ldots, q^n)$ defined above.
- c) Prove that $\omega_{can} \coloneqq -d\lambda_{can}$ is a symplectic form on T^*M and find its expression in the chart (p,q).

Exercise 3: Another Legendre transformation (4 points).

Let $(V, \langle -, -\rangle)$ be a finite dimensional Euclidean \mathbb{R} -vector space. Consider the function $L: V \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{k} ||x||^k$ for k > 1. Show that $dL: V \setminus \{0\} \to V^* \setminus \{0\}, x \mapsto d_x L$ is a diffeomorphism and calculate $H: V^* \setminus \{0\} \to \mathbb{R}, p \mapsto \langle p, (dL)^{-1}(p) \rangle - L((dL)^{-1}(p))$.

Exercise 4: *Pullback connection* (4 points).

Let $V \to M$ be a smooth vector bundle of rank r with connection ∇ and let $F: N \to M$ be a smooth map. For a point $p \in N$, we choose a chart x of M and a local frame (S_1, \ldots, S_r) of π , both defined on an open neighborhood U around F(p). For a section s of the pullback bundle $F^*V \to N$ and a vector $Y \in T_pN$, we now define

$$\nabla_Y^F s \coloneqq \sum_{j=1}^r \left(\partial_Y s^j + \sum_{i=1}^n \Gamma_{ik}^j(F(p)) X^i s^k(p) \right) S_j(F(p))$$

where $s_{|F^{-1}(U)} = \sum_{j=1}^{r} s^{j}(S_{j} \circ F)$, $d_{p}F(Y) = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}|_{F(p)}$ and $\nabla_{\frac{\partial}{\partial x^{i}}} S_{k} = \sum_{j=1}^{r} \Gamma_{ik}^{j} S_{j}$.

- a) Show that ∇^F yields a well-defined connection on $F^*V \to N$.
- b) Prove that $\nabla_Y^F(s \circ F) = (\nabla_X s) \circ F$ for all $s \in \Gamma(V)$, $X \in \Gamma(TM)$ and $Y \in \Gamma(TN)$ with $dF(Y) = X \circ F$.
- c) In the case V = TM, show that

$$\nabla_{\frac{\partial}{\partial y^i}}^F \mathrm{d}F\left(\frac{\partial}{\partial y^j}\right) - \nabla_{\frac{\partial}{\partial y^j}}^F \mathrm{d}F\left(\frac{\partial}{\partial y^i}\right) = T\left(\mathrm{d}F\left(\frac{\partial}{\partial y^i}\right), \mathrm{d}F\left(\frac{\partial}{\partial y^j}\right)\right),$$

where y is a chart of N and T is the torsion tensor (Exercise 2 on Sheet 3) of the connection ∇ on $TM \rightarrow M$.