Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023
Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
Please hand in the exercises until Monday, May 15th in the lecture

Exercise Sheet no. 4

Exercise 1: Symplectic gradient (4 points).
Let (M, ω) be a symplectic manifold, i. e. a pair of a smooth manifold M and a closed non-degenerate 2-form $\omega \in \Omega^{2}(M)$. Let furthermore $f \in C^{\infty}(M)$ be a smooth function on M.
a) Show that there exists a unique vector field $X \in \Gamma(T M)$, called sympectic gradient of f, such that $\mathrm{d} f=\omega(X,-)$.
b) Let $\phi: M \times \mathbb{R} \supset \mathcal{D} \rightarrow M,(p, t) \mapsto \phi_{t}(p)$ be a local flow of X (cf. Exercise 1 on Sheet 2). Show that ω is preserved by the flow, i. e. $\left(\phi_{t}^{*} \omega\right)_{\mid p}=\omega_{\mid p}$ for $(p, t) \in \mathcal{D}$.

Exercise 2: Canonical symplectic structure (4 points).
Let M be a smooth manifold and $\pi_{T^{*} M}: T^{*} M \rightarrow M$ be the cotangent bundle of M with its tangent bundle $\pi_{T T^{*} M}: T T^{*} M \rightarrow T^{*} M$. For $\alpha \in T_{p}^{*} M$ let $\mathrm{d}_{\alpha} \pi_{T^{*} M}: T_{\alpha} T^{*} M \rightarrow T_{p} M$ be the differential of $\pi_{T^{*} M}$ at α. We define $\lambda_{\text {can }} \in \Omega^{1}\left(T^{*} M\right)$ as follows: for $X \in T_{\alpha} T^{*} M$, with $\alpha \in T^{*} M$, we set

$$
\lambda_{\text {can }}(X):=\alpha\left(\mathrm{d}_{\alpha} \pi_{T^{*} M}(X)\right)
$$

Denote by $q: M \supset U \rightarrow V \subset \mathbb{R}^{n}$ be a chart of M.
a) Show that

$$
\begin{aligned}
(p, q): \pi_{T^{*} M}^{-1}(U) & \longrightarrow \mathbb{R}^{n} \times V \\
\alpha & \longmapsto\left(\alpha\left(\frac{\partial}{\partial q^{1}}\right), \ldots, \alpha\left(\frac{\partial}{\partial q^{n}}\right), q^{1}\left(\pi_{T^{*} M}(\alpha)\right), \ldots, q^{n}\left(\pi_{T^{*} M}(\alpha)\right)\right)
\end{aligned}
$$

defines a chart of $T^{*} M$.
b) Show that $\lambda_{\text {can }}$ is well-defined and prove that $\lambda_{\text {can }}=\sum_{i=1}^{n} p_{i} \mathrm{~d} q^{i}$ in the chart $(p, q)=$ $\left(p_{1}, \ldots, p_{n}, q^{1}, \ldots, q^{n}\right)$ defined above.
c) Prove that $\omega_{\text {can }}:=-\mathrm{d} \lambda_{\text {can }}$ is a symplectic form on $T^{*} M$ and find its expression in the chart (p, q).

Exercise 3: Another Legendre transformation (4 points).
Let $(V,\langle-,-\rangle)$ be a finite dimensional Euclidean \mathbb{R}-vector space. Consider the function $L: V \backslash\{0\} \rightarrow \mathbb{R}, x \mapsto \frac{1}{k}\|x\|^{k}$ for $k>1$. Show that $\mathrm{d} L: V \backslash\{0\} \rightarrow V^{*} \backslash\{0\}, x \mapsto \mathrm{~d}_{x} L$ is a diffeomorphism and calculate $H: V^{*} \backslash\{0\} \rightarrow \mathbb{R}, p \mapsto\left\langle p,(\mathrm{~d} L)^{-1}(p)\right\rangle-L\left((\mathrm{~d} L)^{-1}(p)\right)$.

Exercise 4: Pullback connection (4 points).
Let $V \rightarrow M$ be a smooth vector bundle of rank r with connection ∇ and let $F: N \rightarrow M$ be a smooth map. For a point $p \in N$, we choose a chart x of M and a local frame $\left(S_{1}, \ldots, S_{r}\right)$ of π, both defined on an open neighborhood U around $F(p)$. For a section s of the pullback bundle $F^{*} V \rightarrow N$ and a vector $Y \in T_{p} N$, we now define

$$
\nabla_{Y}^{F} s:=\sum_{j=1}^{r}\left(\partial_{Y} s^{j}+\sum_{i=1}^{n} \Gamma_{i k}^{j}(F(p)) X^{i} s^{k}(p)\right) S_{j}(F(p))
$$

where $s_{\mid F^{-1}(U)}=\sum_{j=1}^{r} s^{j}\left(S_{j} \circ F\right), \mathrm{d}_{p} F(Y)=\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i} \mid F(p)}$ and $\nabla_{\frac{\partial}{\partial x^{i}}} S_{k}=\sum_{j=1}^{r} \Gamma_{i k}^{j} S_{j}$.
a) Show that ∇^{F} yields a well-defined connection on $F^{*} V \rightarrow N$.
b) Prove that $\nabla_{Y}^{F}(s \circ F)=\left(\nabla_{X} s\right) \circ F$ for all $s \in \Gamma(V), X \in \Gamma(T M)$ and $Y \in \Gamma(T N)$ with $\mathrm{d} F(Y)=X \circ F$.
c) In the case $V=T M$, show that

$$
\nabla_{\frac{\partial}{\partial y^{i}}}^{F} \mathrm{~d} F\left(\frac{\partial}{\partial y^{j}}\right)-\nabla_{\frac{\partial}{\partial y^{j}}}^{F} \mathrm{~d} F\left(\frac{\partial}{\partial y^{i}}\right)=T\left(\mathrm{~d} F\left(\frac{\partial}{\partial y^{i}}\right), \mathrm{d} F\left(\frac{\partial}{\partial y^{j}}\right)\right),
$$

where y is a chart of N and T is the torsion tensor (Exercise 2 on Sheet 3) of the connection ∇ on $T M \rightarrow M$.

