Symplectic Geometry and Classical Mechanics: Exercises

Exercise Sheet no. 3

Exercise 1: Locality of connections (4 points).

Let ∇ be a connection on a vector bundle $E \to M$ over a smooth manifold M and $U \subset M$ be an open subset. Show that $(\nabla_X s)_{|U} = (\nabla_{X'} s')_{|U}$ for all $X, X' \in \Gamma(TM)$ and $s, s' \in \Gamma(E)$ with $X_{|U} = X'_{|U}$ and $s_{|U} = s'_{|U}$.

Hint: You may take for granted that for all $p \in U$ there is a smooth function η with $\eta \equiv 1$ on a neighborhood of p and $\operatorname{supp}(\eta) \subset U$.

Exercise 2: Torsion tensor (4 points).

Let ∇ be a connection on $TM \to M$ for a smooth manifold M. We define its *torsion* $\mathcal{T}: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$ as $\mathcal{T}(X,Y) \coloneqq \nabla_X Y - \nabla_Y X - [X,Y]$.

- a) Show that $\mathcal{T}(X,Y) = -\mathcal{T}(Y,X)$ and $\mathcal{T}(X + fX',Y) = \mathcal{T}(X,Y) + f\mathcal{T}(X',Y)$ for all $X, X', Y \in \Gamma(TM)$ and $f \in C^{\infty}(M)$.
- b) Show that a tensor $T \in \Gamma(T^*M \otimes T^*M \otimes TM)$ exists with $\mathcal{T}(X,Y) = T(X,Y)$ for all $X, Y \in \Gamma(TM)$.

Exercise 3: A Lagrangian (4 points). Consider the Lagrange function

$$L(v) = \frac{1}{4} \|v\|^4 - \frac{1}{2} \|v\|^2$$

on \mathbb{R}^n . For $x_1, x_2 \in \mathbb{R}^n$, determine all stationary points $q \in \mathcal{D}_{x_1, x_2} = \{q: [t_1, t_2] \to \mathbb{R}^n \text{ smooth } | q(t_1) = x_1, q(t_2) = x_2\}$ of the associated action functional $\mathcal{S}: \mathcal{D}_{x_1, x_2} \to \mathbb{R}$, $\mathcal{S}(q) = \int_{t_1}^{t_2} L(\dot{q}) dt$. *Hint:* Show first that $\|\dot{q}\|^2$ is constant for the curves $q \in \mathcal{D}_{x_1, x_2}$ that are stationary for \mathcal{S} .

Exercise 4: Legendre transformation (4 points).

Let $(V, \|-\|)$ be a finite dimensional normed real vector space. Assume that $L: V \setminus \{0\} \rightarrow \mathbb{R}$, $x \mapsto \frac{1}{2} \|x\|^2$ is smooth and $\operatorname{Hess}_x L$ is positive definite for all $x \in V \setminus \{0\}$. Recall the definition of the dual norm on V^* : For $\alpha \in V^*$ it is given by $\|\alpha\|_* \coloneqq \sup_{x \in V \setminus \{0\}} \frac{\langle \alpha, x \rangle}{\|x\|}$. Here, and in the following, $\langle \alpha, x \rangle \coloneqq \alpha(x)$ denotes the duality pairing.

- a) Show that $dL: V \setminus \{0\} \to V^* \setminus \{0\}, x \to d_x L$ is a well-defined local diffeomorphism.
- b) Show that $\langle \mathbf{d}_x L, x \rangle = ||x||^2 = ||\mathbf{d}_x L||_*^2$ for all $x \in V \setminus \{0\}$.
- c) Prove that dL is injective. Hint: If $d_x L = d_y L$, consider $\langle d_x L, tx + (1-t)y \rangle$ for $t \in [0,1]$.
- d) Conclude that dL is a diffeomorphism.
- e) Consider

$$H: V^* \smallsetminus \{0\} \longrightarrow \mathbb{R}$$
$$p \longmapsto \langle p, (\mathrm{d}L)^{-1}(p) \rangle - L((\mathrm{d}L)^{-1}(p)).$$

Prove that $H(p) = \frac{1}{2} ||p||_{*}^{2}$.