Symplectic Geometry and Classical Mechanics: Exercises
 University of Regensburg, Summer term 2023
 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel
 Please hand in the exercises until Monday, May 8th

Exercise Sheet no. 3

Exercise 1: Locality of connections (4 points).
Let ∇ be a connection on a vector bundle $E \rightarrow M$ over a smooth manifold M and $U \subset M$ be an open subset. Show that $\left(\nabla_{X} s\right)_{\mid U}=\left(\nabla_{X^{\prime}} s^{\prime}\right)_{\mid U}$ for all $X, X^{\prime} \in \Gamma(T M)$ and $s, s^{\prime} \in \Gamma(E)$ with $X_{\mid U}=X_{\mid U}^{\prime}$ and $s_{\mid U}=s_{\mid U}^{\prime}$.
Hint: You may take for granted that for all $p \in U$ there is a smooth function η with $\eta \equiv 1$ on a neighborhood of p and $\operatorname{supp}(\eta) \subset U$.

Exercise 2: Torsion tensor (4 points).
Let ∇ be a connection on $T M \rightarrow M$ for a smooth manifold M. We define its torsion $\mathcal{T}: \Gamma(T M) \times \Gamma(T M) \rightarrow \Gamma(T M)$ as $\mathcal{T}(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$.
a) Show that $\mathcal{T}(X, Y)=-\mathcal{T}(Y, X)$ and $\mathcal{T}\left(X+f X^{\prime}, Y\right)=\mathcal{T}(X, Y)+f \mathcal{T}\left(X^{\prime}, Y\right)$ for all $X, X^{\prime}, Y \in \Gamma(T M)$ and $f \in C^{\infty}(M)$.
b) Show that a tensor $T \in \Gamma\left(T^{*} M \otimes T^{*} M \otimes T M\right)$ exists with $\mathcal{T}(X, Y)=T(X, Y)$ for all $X, Y \in \Gamma(T M)$.

Exercise 3: A Lagrangian (4 points).
Consider the Lagrange function

$$
L(v)=\frac{1}{4}\|v\|^{4}-\frac{1}{2}\|v\|^{2}
$$

on \mathbb{R}^{n}. For $x_{1}, x_{2} \in \mathbb{R}^{n}$, determine all stationary points $q \in \mathcal{D}_{x_{1}, x_{2}}=\left\{q:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}^{n}\right.$ smooth \mid $\left.q\left(t_{1}\right)=x_{1}, q\left(t_{2}\right)=x_{2}\right\}$ of the associated action functional $\mathcal{S}: \mathcal{D}_{x_{1}, x_{2}} \rightarrow \mathbb{R}, \mathcal{S}(q)=\int_{t_{1}}^{t_{2}} L(\dot{q}) \mathrm{d} t$. Hint: Show first that $\|\dot{q}\|^{2}$ is constant for the curves $q \in \mathcal{D}_{x_{1}, x_{2}}$ that are stationary for \mathcal{S}.

Exercise 4: Legendre transformation (4 points).
Let $(V,\|-\|)$ be a finite dimensional normed real vector space. Assume that $L: V \backslash\{0\} \rightarrow$ $\mathbb{R}, x \mapsto \frac{1}{2}\|x\|^{2}$ is smooth and $\operatorname{Hess}_{x} L$ is positive definite for all $x \in V \backslash\{0\}$. Recall the definition of the dual norm on V^{*} : For $\alpha \in V^{*}$ it is given by $\|\alpha\|_{*}:=\sup _{x \in V \backslash\{0\}} \frac{\langle\alpha, x\rangle}{\|x\|}$. Here, and in the following, $\langle\alpha, x\rangle:=\alpha(x)$ denotes the duality pairing.
a) Show that $\mathrm{d} L: V \backslash\{0\} \rightarrow V^{*} \backslash\{0\}, x \rightarrow \mathrm{~d}_{x} L$ is a well-defined local diffeomorphism.
b) Show that $\left\langle\mathrm{d}_{x} L, x\right\rangle=\|x\|^{2}=\left\|\mathrm{d}_{x} L\right\|_{*}^{2}$ for all $x \in V \backslash\{0\}$.
c) Prove that $\mathrm{d} L$ is injective.

Hint: If $\mathrm{d}_{x} L=\mathrm{d}_{y} L$, consider $\left\langle\mathrm{d}_{x} L, t x+(1-t) y\right\rangle$ for $t \in[0,1]$.
d) Conclude that $\mathrm{d} L$ is a diffeomorphism.
e) Consider

$$
\begin{aligned}
H: V^{*} \backslash\{0\} & \longrightarrow \mathbb{R} \\
p & \longmapsto\left\langle p,(\mathrm{~d} L)^{-1}(p)\right\rangle-L\left((\mathrm{~d} L)^{-1}(p)\right) .
\end{aligned}
$$

Prove that $H(p)=\frac{1}{2}\|p\|_{*}^{2}$.

