

Exercise Sheet no. 2

Exercise 1: Vector flows (4 points).

Let M be a manifold and X a smooth vector field on M. For $p \in M$, a local flow of X around p is a smooth map $\Phi^X: U \times (-\epsilon, \epsilon) \to M$, $(x, t) \mapsto \Phi^X_t(x)$, where $\epsilon \in (0, \infty]$ and U is an open neighborhood of p, with the following properties:

- $\Phi_0^X = \mathrm{id}_M$
- $\frac{\mathrm{d}}{\mathrm{d}t}\Phi_t^X = X \circ \Phi_t^X$.
- a) Show that a local flow exists around any $p \in M$ and is unique up to restriction. Show, moreover, that Φ_t^X is a diffeomorphism onto its image for all $t \in (-\epsilon, \epsilon)$. *Hint:* Reduce to an ODE on an open subset of \mathbb{R}^n .
- b) Give an example of a vector field on \mathbb{R}^n , where the local flow around 0 does not extend to all times, i.e. where $\epsilon = \infty$ is not possible.
- c) Assume now that M is closed. Prove that there exits a global flow, i.e. a local flow with U = M and $\epsilon = \infty$.

Exercise 2: *Lie derivative* (4 points).

Recall the definition of pull-back of functions, differential 1-forms and vector fields: Along a smooth map $\phi: U \to V$ the pull-back of $f \in C^{\infty}(V)$ is $\phi^* f = f \circ \phi \in C^{\infty}(U)$ and the pull-back of $\alpha \in \Omega^1(V) = \Gamma(T^*V)$ is $\phi^* \alpha = \phi \circ d\phi \in \Omega^1(U)$. If $\phi: U \to V$ is a local diffeomorphism, then the pull-back of a vector field $X \in \Gamma(TV)$ along ϕ is the unique vector field $\phi^* X \in \Gamma(TU)$ with $d\phi \circ \phi^* X = X \circ \phi$.

Let X be a smooth vector field on a manifold M. For a function, 1-form or vector field (or more generally some tensor field) T, the *Lie derivative* $\mathcal{L}_X T$ is defined as follows:

$$(\mathcal{L}_X T)_{|p} = \frac{\mathrm{d}}{\mathrm{d}t}_{|t=0} ((\Phi_t^X)^* T)_{|p}$$

for all $p \in M$, where Φ^X is any local flow of X around p.

- a) Show that $\mathcal{L}_X T$ is well-defined, i.e. smooth and independent of the choices made.
- b) Prove that $\mathcal{L}_X f = \partial_X f$ for a function $f \in C^{\infty}(M)$.
- c) Prove the product rule $\mathcal{L}_X(\alpha(Y)) = (\mathcal{L}_X\alpha)(Y) + \alpha(\mathcal{L}_XY)$ for $\alpha \in \Omega^1(M)$ and $Y \in \Gamma(TM)$.
- d) Show that $\mathcal{L}_X Y = [X, Y]$ for $Y \in \Gamma(TM)$, where the Lie bracket is defined through $\partial_{[X,Y]} f = (\partial_X \partial_Y \partial_Y \partial_X) f$ for all $f \in C^{\infty}(M)$.

¹In a similar fashion, pull-backs of differential k-forms, for arbitrary k, and of (r, s)-tensor fields on M can be defined.

Exercise 3: 2-out-of-3 for the unitary group (4 points).

Consider \mathbb{C}^n with the standard scalar product $\langle -, - \rangle$, which can be decomposed as in Exercise 3 on Sheet 1 into real and imaginary part: $\langle -, - \rangle = g(-, -) + i\omega(-, -)$. Note that g and ω are the canonical real scalar product and the canonical symplectic form, respectively, on \mathbb{C}^n , which we canonically identify with \mathbb{R}^{2n} .

We consider the following groups:

$$Gl(2n, \mathbb{R}) = \{T \in \mathbb{R}^{2n \times 2n} \mid \det(T) \neq 0\}$$

$$Gl(n, \mathbb{C}) = \{T \in \mathbb{C}^{n \times n} \mid \det(T) \neq 0\}$$

$$O(2n) = \{T \in \mathbb{R}^{2n \times 2n} \mid g(T \cdot -, T \cdot -) = g\}$$

$$Symp(2n) = \{T \in \mathbb{R}^{2n \times 2n} \mid \omega(T \cdot -, T \cdot -) = \omega\}$$

$$U(n) = \{T \in \mathbb{C}^{n \times n} \mid \langle T \cdot -, T \cdot - \rangle = \langle -, - \rangle\}.$$

Explain how all these groups (especially $Gl(n, \mathbb{C})$ and U(n)) can be viewed as subgroups of $Gl(2n, \mathbb{R})$ and show the following:

$$U(n) = \operatorname{Gl}(n, \mathbb{C}) \cap O(2n) = O(2n) \cap \operatorname{Symp}(2n) = \operatorname{Symp}(2n) \cap \operatorname{Gl}(n, \mathbb{C}).$$

Exercise 4: Fundamental group of U(n) (4 points).

Show that det: $U(n) \to S^1$ induces an isomorphism on fundamental groups. You may use without proof that $SU(2n) = \{T \in U(n) \mid \det(T) = 1\}$ is simply connected.

Hint: You could start as follows. Let $\iota: S^1 \to U(n)$ be the map $x \to \begin{pmatrix} x & 0 \\ 0 & 1_{n-1} \end{pmatrix}$. For a loop $\gamma: S^1 \to U(n)$ now consider $x \mapsto (\iota \circ \det \circ \gamma(x))^{-1} \cdot \gamma(x)$ and show that this is null-homotopic. Alternative approaches might be even more efficient, depending on your previous knowledge.