Exercise Sheet no. 2

Exercise 1: Vector flows (4 points).
Let M be a manifold and X a smooth vector field on M. For $p \in M$, a local flow of X around p is a smooth map $\Phi^{X}: U \times(-\epsilon, \epsilon) \rightarrow M,(x, t) \mapsto \Phi_{t}^{X}(x)$, where $\epsilon \in(0, \infty]$ and U is an open neighborhood of p, with the following properties:

- $\Phi_{0}^{X}=\mathrm{id}_{M}$
- $\frac{\mathrm{d}}{\mathrm{d} t} \Phi_{t}^{X}=X \circ \Phi_{t}^{X}$.
a) Show that a local flow exists around any $p \in M$ and is unique up to restriction. Show, moreover, that Φ_{t}^{X} is a diffeomorphism onto its image for all $t \in(-\epsilon, \epsilon)$. Hint: Reduce to an ODE on an open subset of \mathbb{R}^{n}.
b) Give an example of a vector field on \mathbb{R}^{n}, where the local flow around 0 does not extend to all times, i. e. where $\epsilon=\infty$ is not possible.
c) Assume now that M is closed. Prove that there exits a global flow, i. e. a local flow with $U=M$ and $\epsilon=\infty$.

Exercise 2: Lie derivative (4 points).
Recall the definition of pull-back of functions, differential 1-forms and vector fields: Along a smooth map $\phi: U \rightarrow V$ the pull-back of $f \in C^{\infty}(V)$ is $\phi^{*} f=f \circ \phi \in C^{\infty}(U)$ and the pull-back of $\alpha \in \Omega^{1}(V)=\Gamma\left(T^{*} V\right)$ is $\phi^{*} \alpha=\phi \circ \mathrm{d} \phi \in \Omega^{1}(U)$. If $\phi: U \rightarrow V$ is a local diffeomorphism, then the pull-back of a vector field $X \in \Gamma(T V)$ along ϕ is the unique vector field $\phi^{*} X \in \Gamma(T U)$ with $\mathrm{d} \phi \circ \phi^{*} X=X \circ \phi$. ${ }^{1}$

Let X be a smooth vector field on a manifold M. For a function, 1-form or vector field (or more generally some tensor field) T, the Lie derivative $\mathcal{L}_{X} T$ is defined as follows:

$$
\left.\left(\mathcal{L}_{X} T\right)_{\mid p}=\frac{\mathrm{d}}{\mathrm{~d} t} \right\rvert\, t=0 .
$$

for all $p \in M$, where Φ^{X} is any local flow of X around p.
a) Show that $\mathcal{L}_{X} T$ is well-defined, i. e. smooth and independent of the choices made.
b) Prove that $\mathcal{L}_{X} f=\partial_{X} f$ for a function $f \in C^{\infty}(M)$.
c) Prove the product rule $\mathcal{L}_{X}(\alpha(Y))=\left(\mathcal{L}_{X} \alpha\right)(Y)+\alpha\left(\mathcal{L}_{X} Y\right)$ for $\alpha \in \Omega^{1}(M)$ and $Y \in$ $\Gamma(T M)$.
d) Show that $\mathcal{L}_{X} Y=[X, Y]$ for $Y \in \Gamma(T M)$, where the Lie bracket is defined through $\partial_{[X, Y]} f=\left(\partial_{X} \partial_{Y}-\partial_{Y} \partial_{X}\right) f$ for all $f \in C^{\infty}(M)$.

[^0]Exercise 3: 2-out-of-3 for the unitary group (4 points).
Consider \mathbb{C}^{n} with the standard scalar product $\langle-,-\rangle$, which can be decomposed as in Exercise 3 on Sheet 1 into real and imaginary part: $\langle-,-\rangle=g(-,-)+i \omega(-,-)$. Note that g and ω are the canonical real scalar product and the canonical symplectic form, respectively, on \mathbb{C}^{n}, which we canonically identify with $\mathbb{R}^{2 n}$.

We consider the following groups:

$$
\begin{aligned}
\operatorname{Gl}(2 n, \mathbb{R}) & =\left\{T \in \mathbb{R}^{2 n \times 2 n} \mid \operatorname{det}(T) \neq 0\right\} \\
\operatorname{Gl}(n, \mathbb{C}) & =\left\{T \in \mathbb{C}^{n \times n} \mid \operatorname{det}(T) \neq 0\right\} \\
O(2 n) & =\left\{T \in \mathbb{R}^{2 n \times 2 n} \mid g(T \cdot-, T \cdot-)=g\right\} \\
\operatorname{Symp}(2 n) & =\left\{T \in \mathbb{R}^{2 n \times 2 n} \mid \omega(T \cdot-, T \cdot-)=\omega\right\} \\
U(n) & =\left\{T \in \mathbb{C}^{n \times n} \mid\langle T \cdot-, T \cdot-\rangle=\langle-,-\rangle\right\} .
\end{aligned}
$$

Explain how all these groups (especially $\mathrm{Gl}(n, \mathbb{C})$ and $U(n))$ can be viewed as subgroups of $\mathrm{Gl}(2 n, \mathbb{R})$ and show the following:

$$
U(n)=\operatorname{Gl}(n, \mathbb{C}) \cap O(2 n)=O(2 n) \cap \operatorname{Symp}(2 n)=\operatorname{Symp}(2 n) \cap \operatorname{Gl}(n, \mathbb{C})
$$

Exercise 4: Fundamental group of $U(n)$ (4 points).
Show that det: $U(n) \rightarrow S^{1}$ induces an isomorphism on fundamental groups. You may use without proof that $S U(2 n)=\{T \in U(n) \mid \operatorname{det}(T)=1\}$ is simply connected.
Hint: You could start as follows. Let $\iota: S^{1} \rightarrow U(n)$ be the map $x \rightarrow\left(\begin{array}{cc}x & 0 \\ 0 & 1_{n-1}\end{array}\right)$. For a loop $\gamma: S^{1} \rightarrow U(n)$ now consider $x \mapsto(\iota \circ \operatorname{det} \circ \gamma(x))^{-1} \cdot \gamma(x)$ and show that this is null-homotopic. Alternative approaches might be even more efficient, depending on your previous knowledge.

[^0]: ${ }^{1}$ In a similar fashion, pull-backs of differential k-forms, for arbitrary k, and of (r, s)-tensor fields on M can be defined.

