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Exercise 1: Vector flows (4 points).
Let M be a manifold and X a smooth vector field on M . For p ∈ M , a local flow of X
around p is a smooth map ΦX ∶U × (−ε, ε) →M, (x, t) ↦ ΦX

t (x), where ε ∈ (0,∞] and U
is an open neighborhood of p, with the following properties:

• ΦX
0 = idM

• d
dtΦ

X
t =X ○ΦX

t .

a) Show that a local flow exists around any p ∈ M and is unique up to restriction.
Show, moreover, that ΦX

t is a diffeomorphism onto its image for all t ∈ (−ε, ε).
Hint: Reduce to an ODE on an open subset of Rn.

b) Give an example of a vector field on Rn, where the local flow around 0 does not
extend to all times, i. e. where ε = ∞ is not possible.

c) Assume now that M is closed. Prove that there exits a global flow, i. e. a local flow
with U =M and ε = ∞.

Exercise 2: Lie derivative (4 points).
Recall the definition of pull-back of functions, differential 1-forms and vector fields: Along a
smooth map φ∶U → V the pull-back of f ∈ C∞(V ) is φ∗f = f○φ ∈ C∞(U) and the pull-back
of α ∈ Ω1(V ) = Γ(T ∗V ) is φ∗α = φ○dφ ∈ Ω1(U). If φ∶U → V is a local diffeomorphism, then
the pull-back of a vector field X ∈ Γ(TV ) along φ is the unique vector field φ∗X ∈ Γ(TU)
with dφ ○ φ∗X =X ○ φ. 1

Let X be a smooth vector field on a manifoldM . For a function, 1-form or vector field
(or more generally some tensor field) T , the Lie derivative LXT is defined as follows:

(LXT )∣p =
d

dt ∣t=0
((ΦX

t )∗T )∣p

for all p ∈M , where ΦX is any local flow of X around p.

a) Show that LXT is well-defined, i. e. smooth and independent of the choices made.

b) Prove that LXf = ∂Xf for a function f ∈ C∞(M).

c) Prove the product rule LX(α(Y )) = (LXα)(Y ) + α(LXY ) for α ∈ Ω1(M) and Y ∈
Γ(TM).

d) Show that LXY = [X,Y ] for Y ∈ Γ(TM), where the Lie bracket is defined through
∂[X,Y ]f = (∂X∂Y − ∂Y ∂X)f for all f ∈ C∞(M).

1In a similar fashion, pull-backs of differential k-forms, for arbitrary k, and of (r, s)-tensor fields on
M can be defined.



Exercise 3: 2-out-of-3 for the unitary group (4 points).
Consider Cn with the standard scalar product ⟨−,−⟩, which can be decomposed as in
Exercise 3 on Sheet 1 into real and imaginary part: ⟨−,−⟩ = g(−,−) + iω(−,−). Note
that g and ω are the canonical real scalar product and the canonical symplectic form,
respectively, on Cn, which we canonically identify with R2n.

We consider the following groups:

Gl(2n,R) = {T ∈ R2n×2n ∣ det(T ) ≠ 0}
Gl(n,C) = {T ∈ Cn×n ∣ det(T ) ≠ 0}
O(2n) = {T ∈ R2n×2n ∣ g(T ⋅ −, T ⋅ −) = g}

Symp(2n) = {T ∈ R2n×2n ∣ ω(T ⋅ −, T ⋅ −) = ω}
U(n) = {T ∈ Cn×n ∣ ⟨T ⋅ −, T ⋅ −⟩ = ⟨−,−⟩}.

Explain how all these groups (especially Gl(n,C) and U(n)) can be viewed as subgroups
of Gl(2n,R) and show the following:

U(n) = Gl(n,C) ∩O(2n) = O(2n) ∩ Symp(2n) = Symp(2n) ∩Gl(n,C).

Exercise 4: Fundamental group of U(n) (4 points).
Show that det∶U(n) → S1 induces an isomorphism on fundamental groups. You may use
without proof that SU(2n) = {T ∈ U(n) ∣ det(T ) = 1} is simply connected.

Hint: You could start as follows. Let ι∶S1 → U(n) be the map x → (x 0
0 1n−1

). For a loop

γ∶S1 → U(n) now consider x↦ (ι○det ○γ(x))−1 ⋅γ(x) and show that this is null-homotopic.
Alternative approaches might be even more efficient, depending on your previous know-
ledge.


