Symplectic Geometry and Classical Mechanics: Exercises

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel No submission – these exercises will be solved and discussed on Wednesday, April 19th during the exercise class

Exercise Sheet no. 0

Exercise 1: Differential forms (0 points). On \mathbb{R}^4 , we consider the differential forms $\alpha \in \Omega^1 \mathbb{R}^4 = \Gamma(T^* \mathbb{R}^4)$ and $\beta \in \Omega^2 \mathbb{R}^4 = \Gamma(\bigwedge^2 T^* \mathbb{R}^4)$ given by

$$\begin{split} \alpha &= dx^1 + x^2 dx^2, \\ \beta &= \sin x^2 dx^1 \wedge dx^3 + \cos x^3 dx^2 \wedge dx^4. \end{split}$$

(As usual, the dx^i are formed with respect to the chart $x = (x^1, \ldots, x^4) = \mathrm{id}_{\mathbb{R}^4}$.) Calculate $\alpha \wedge \beta$ and $d\beta$.

Exercise 2: Differentiation and insertion (0 points).

Let M be a smooth manifold and $X \in \Gamma(TM)$ a vector field on M. Consider the graded ring of differential forms $\Omega^{\bullet}(M) = \Gamma(\bigwedge^{\bullet} T^*M)$ with its operations Cartan differentiation $d: \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$ and X-insertion $\iota_X: \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$. Show that

$$\iota_X \circ d + d \circ \iota_X = (\iota_X + d)^2$$

and that this operator is derivative (i.e. compatible with \wedge -product).

Exercise 3: Cartan's magic formula (0 points).

Let again M be a smooth manifold and $X \in \Gamma(TM)$ be a vector field on M. If Φ_X is the local flow of X, then the *Lie-derivative* on differential forms is defined by

$$\mathcal{L}_X: \Omega^{\bullet}(M) \longrightarrow \Omega^{\bullet}(M),$$
$$\omega \longmapsto \frac{\mathrm{d}}{\mathrm{d}t}_{|t=0} \Phi_X(t)^* \omega$$

Show that $\mathcal{L}_X = \iota_X \circ d + d \circ \iota_X$.