University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel No submission – these exercises will be solved and discussed on Wednesday, April 19th during the exercise class

Exercise Sheet no. 0

Exercise 1: Differential forms (0 points). On \mathbb{R}^4 , we consider the differential forms $\alpha \in \Omega^1 \mathbb{R}^4 = \Gamma(T^* \mathbb{R}^4)$ and $\beta \in \Omega^2 \mathbb{R}^4 = \Gamma(\bigwedge^2 T^* \mathbb{R}^4)$ given by

$$\begin{split} \alpha &= dx^1 + x^2 dx^2, \\ \beta &= \sin x^2 dx^1 \wedge dx^3 + \cos x^3 dx^2 \wedge dx^4. \end{split}$$

(As usual, the dx^i are formed with respect to the chart $x = (x^1, \ldots, x^4) = \mathrm{id}_{\mathbb{R}^4}$.) Calculate $\alpha \wedge \beta$ and $d\beta$.

Exercise 2: Differentiation and insertion (0 points).

Let M be a smooth manifold and $X \in \Gamma(TM)$ a vector field on M. Consider the graded ring of differential forms $\Omega^{\bullet}(M) = \Gamma(\bigwedge^{\bullet} T^*M)$ with its operations Cartan differentiation $d: \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$ and X-insertion $\iota_X: \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$. Show that

$$\iota_X \circ d + d \circ \iota_X = (\iota_X + d)^2$$

and that this operator is derivative (i.e. compatible with \wedge -product).

Exercise 3: Cartan's magic formula (0 points).

Let again M be a smooth manifold and $X \in \Gamma(TM)$ be a vector field on M. If Φ_X is the local flow of X, then the *Lie-derivative* on differential forms is defined by

$$\mathcal{L}_X: \Omega^{\bullet}(M) \longrightarrow \Omega^{\bullet}(M),$$
$$\omega \longmapsto \frac{\mathrm{d}}{\mathrm{d}t}_{|t=0} \Phi_X(t)^* \omega$$

Show that $\mathcal{L}_X = \iota_X \circ d + d \circ \iota_X$.

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, April 24th

Exercise Sheet no. 1

Exercise 1: Angular momentum (4 points). We consider the Newtonian equation of motion

 $m\ddot{\mathbf{x}}(t) = -\text{grad}V(\mathbf{x}(t)),$

where $m \in \mathbb{R}$, $\mathbf{x}: (a, b) \to \mathbb{R}^3$ and V(x) = f(||x||) for a smooth function $f: \mathbb{R} \to \mathbb{R}$ and $||\cdot||$ the standard norm on \mathbb{R}^3 . We define the angular momentum as $\mathbf{L}(t) \coloneqq m\mathbf{x}(t) \times \dot{\mathbf{x}}(t)$. Show that angular momentum is conserved, i.e. $\frac{d}{dt}\mathbf{L}(t) = 0$ for all $t \in (a, b)$ and any solution $\mathbf{x}(t)$ of the equation of motion.

Exercise 2: Symplectic basis (4 points).

Let V be a finite-dimensional real vector space. Furthermore, let $\omega: V \times V \to \mathbb{R}$ be an anti-symmetric non-degenerate bilinear form.¹ Show: There is an $n \in \mathbb{N}$ and a basis $(u_1, \ldots, u_n, v_1, \ldots, v_n)$ of V such that

$$\omega(u_j, u_k) = \omega(v_j, v_k) = 0, \qquad \qquad \omega(u_j, v_k) = \delta_{jk}$$

for all $j, k \in \{1, ..., n\}$.

Hint: First construct suitable u_1 and v_1 , and then consider

$$V_1 \coloneqq \{x \in V \mid \omega(x, u_1) = \omega(x, v_1) = 0\}.$$

Remark: In particular, this exercise shows that the dimension of V is even, $\dim V = 2n$.

Exercise 3: *Hermitian scalar products* (4 points).

Let V be complex vector space and g a real scalar product on (the underlying real vector space of) V. Define $\omega(X, Y) \coloneqq g(iX, Y)$ for all $X, Y \in V$.

- a) Show that ω is a non-degenerate bilinear form.
- b) Prove that the following are equivalent:
 - i) g(iX, iY) = g(X, Y) for all $X, Y \in V$.
 - ii) $\omega(X, Y) = -\omega(Y, X)$ for all $X, Y \in V$.
 - iii) $g + i\omega$ is a Hermitian scalar product on V.²

Exercise 4: A special linear group (4 points).

Let $SL(2,\mathbb{R})$ be the set of all 2×2 -matrices with determinant 1. Show that $SL(2,\mathbb{R})$ is a submanifold of $\mathbb{R}^{2\times 2} \cong \mathbb{R}^4$. Prove that $SL(2,\mathbb{R})$ is diffeomorphic to $S^1 \times \mathbb{R}^2$.

¹Recall: A bilinear form is called *anti-symmetric*, if $\omega(x, y) = -\omega(y, x)$ for all $x, y \in V$. A bilinear form is called *non-degenerate*, if $\omega(x, y) = 0$ for all $x \in V$ implies y = 0.

²We use the convention that Hermitian scalar products are \mathbb{C} -linear in the second argument.

Exercise Sheet no. 2

Exercise 1: Vector flows (4 points).

Let M be a manifold and X a smooth vector field on M. For $p \in M$, a local flow of X around p is a smooth map $\Phi^X: U \times (-\epsilon, \epsilon) \to M$, $(x, t) \mapsto \Phi_t^X(x)$, where $\epsilon \in (0, \infty]$ and U is an open neighborhood of p, with the following properties:

- $\Phi_0^X = \mathrm{id}_M$
- $\frac{\mathrm{d}}{\mathrm{d}t}\Phi_t^X = X \circ \Phi_t^X$.
- a) Show that a local flow exists around any $p \in M$ and is unique up to restriction. Show, moreover, that Φ_t^X is a diffeomorphism onto its image for all $t \in (-\epsilon, \epsilon)$. *Hint:* Reduce to an ODE on an open subset of \mathbb{R}^n .
- b) Give an example of a vector field on \mathbb{R}^n , where the local flow around 0 does not extend to all times, i.e. where $\epsilon = \infty$ is not possible.
- c) Assume now that M is closed. Prove that there exits a global flow, i.e. a local flow with U = M and $\epsilon = \infty$.

Exercise 2: *Lie derivative* (4 points).

Recall the definition of pull-back of functions, differential 1-forms and vector fields: Along a smooth map $\phi: U \to V$ the pull-back of $f \in C^{\infty}(V)$ is $\phi^* f = f \circ \phi \in C^{\infty}(U)$ and the pull-back of $\alpha \in \Omega^1(V) = \Gamma(T^*V)$ is $\phi^* \alpha = \phi \circ d\phi \in \Omega^1(U)$. If $\phi: U \to V$ is a local diffeomorphism, then the pull-back of a vector field $X \in \Gamma(TV)$ along ϕ is the unique vector field $\phi^* X \in \Gamma(TU)$ with $d\phi \circ \phi^* X = X \circ \phi$.

Let X be a smooth vector field on a manifold M. For a function, 1-form or vector field (or more generally some tensor field) T, the *Lie derivative* $\mathcal{L}_X T$ is defined as follows:

$$(\mathcal{L}_X T)_{|p} = \frac{\mathrm{d}}{\mathrm{d}t}_{|t=0} ((\Phi_t^X)^* T)_{|p}$$

for all $p \in M$, where Φ^X is any local flow of X around p.

- a) Show that $\mathcal{L}_X T$ is well-defined, i.e. smooth and independent of the choices made.
- b) Prove that $\mathcal{L}_X f = \partial_X f$ for a function $f \in C^{\infty}(M)$.
- c) Prove the product rule $\mathcal{L}_X(\alpha(Y)) = (\mathcal{L}_X\alpha)(Y) + \alpha(\mathcal{L}_XY)$ for $\alpha \in \Omega^1(M)$ and $Y \in \Gamma(TM)$.
- d) Show that $\mathcal{L}_X Y = [X, Y]$ for $Y \in \Gamma(TM)$, where the Lie bracket is defined through $\partial_{[X,Y]} f = (\partial_X \partial_Y \partial_Y \partial_X) f$ for all $f \in C^{\infty}(M)$.

¹In a similar fashion, pull-backs of differential k-forms, for arbitrary k, and of (r, s)-tensor fields on M can be defined.

Exercise 3: 2-out-of-3 for the unitary group (4 points).

Consider \mathbb{C}^n with the standard scalar product $\langle -, - \rangle$, which can be decomposed as in Exercise 3 on Sheet 1 into real and imaginary part: $\langle -, - \rangle = g(-, -) + i\omega(-, -)$. Note that g and ω are the canonical real scalar product and the canonical symplectic form, respectively, on \mathbb{C}^n , which we canonically identify with \mathbb{R}^{2n} .

We consider the following groups:

$$Gl(2n, \mathbb{R}) = \{T \in \mathbb{R}^{2n \times 2n} \mid \det(T) \neq 0\}$$

$$Gl(n, \mathbb{C}) = \{T \in \mathbb{C}^{n \times n} \mid \det(T) \neq 0\}$$

$$O(2n) = \{T \in \mathbb{R}^{2n \times 2n} \mid g(T \cdot -, T \cdot -) = g\}$$

$$Symp(2n) = \{T \in \mathbb{R}^{2n \times 2n} \mid \omega(T \cdot -, T \cdot -) = \omega\}$$

$$U(n) = \{T \in \mathbb{C}^{n \times n} \mid \langle T \cdot -, T \cdot - \rangle = \langle -, - \rangle\}.$$

Explain how all these groups (especially $Gl(n, \mathbb{C})$ and U(n)) can be viewed as subgroups of $Gl(2n, \mathbb{R})$ and show the following:

$$U(n) = \operatorname{Gl}(n, \mathbb{C}) \cap O(2n) = O(2n) \cap \operatorname{Symp}(2n) = \operatorname{Symp}(2n) \cap \operatorname{Gl}(n, \mathbb{C}).$$

Exercise 4: Fundamental group of U(n) (4 points).

Show that det: $U(n) \to S^1$ induces an isomorphism on fundamental groups. You may use without proof that $SU(2n) = \{T \in U(n) \mid \det(T) = 1\}$ is simply connected.

Hint: You could start as follows. Let $\iota: S^1 \to U(n)$ be the map $x \to \begin{pmatrix} x & 0 \\ 0 & 1_{n-1} \end{pmatrix}$. For a loop $\gamma: S^1 \to U(n)$ now consider $x \mapsto (\iota \circ \det \circ \gamma(x))^{-1} \cdot \gamma(x)$ and show that this is null-homotopic. Alternative approaches might be even more efficient, depending on your previous knowledge.

Exercise Sheet no. 3

Exercise 1: Locality of connections (4 points).

Let ∇ be a connection on a vector bundle $E \to M$ over a smooth manifold M and $U \subset M$ be an open subset. Show that $(\nabla_X s)_{|U} = (\nabla_{X'} s')_{|U}$ for all $X, X' \in \Gamma(TM)$ and $s, s' \in \Gamma(E)$ with $X_{|U} = X'_{|U}$ and $s_{|U} = s'_{|U}$.

Hint: You may take for granted that for all $p \in U$ there is a smooth function η with $\eta \equiv 1$ on a neighborhood of p and $\operatorname{supp}(\eta) \subset U$.

Exercise 2: Torsion tensor (4 points).

Let ∇ be a connection on $TM \to M$ for a smooth manifold M. We define its *torsion* $\mathcal{T}: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$ as $\mathcal{T}(X,Y) \coloneqq \nabla_X Y - \nabla_Y X - [X,Y]$.

- a) Show that $\mathcal{T}(X,Y) = -\mathcal{T}(Y,X)$ and $\mathcal{T}(X + fX',Y) = \mathcal{T}(X,Y) + f\mathcal{T}(X',Y)$ for all $X, X', Y \in \Gamma(TM)$ and $f \in C^{\infty}(M)$.
- b) Show that a tensor $T \in \Gamma(T^*M \otimes T^*M \otimes TM)$ exists with $\mathcal{T}(X,Y) = T(X,Y)$ for all $X, Y \in \Gamma(TM)$.

Exercise 3: A Lagrangian (4 points). Consider the Lagrange function

$$L(v) = \frac{1}{4} \|v\|^4 - \frac{1}{2} \|v\|^2$$

on \mathbb{R}^n . For $x_1, x_2 \in \mathbb{R}^n$, determine all stationary points $q \in \mathcal{D}_{x_1, x_2} = \{q: [t_1, t_2] \to \mathbb{R}^n \text{ smooth } | q(t_1) = x_1, q(t_2) = x_2\}$ of the associated action functional $\mathcal{S}: \mathcal{D}_{x_1, x_2} \to \mathbb{R}$, $\mathcal{S}(q) = \int_{t_1}^{t_2} L(\dot{q}) dt$. *Hint:* Show first that $\|\dot{q}\|^2$ is constant for the curves $q \in \mathcal{D}_{x_1, x_2}$ that are stationary for \mathcal{S} .

Exercise 4: Legendre transformation (4 points).

Let $(V, \|-\|)$ be a finite dimensional normed real vector space. Assume that $L: V \setminus \{0\} \rightarrow \mathbb{R}$, $x \mapsto \frac{1}{2} \|x\|^2$ is smooth and $\operatorname{Hess}_x L$ is positive definite for all $x \in V \setminus \{0\}$. Recall the definition of the dual norm on V^* : For $\alpha \in V^*$ it is given by $\|\alpha\|_* \coloneqq \sup_{x \in V \setminus \{0\}} \frac{\langle \alpha, x \rangle}{\|x\|}$. Here, and in the following, $\langle \alpha, x \rangle \coloneqq \alpha(x)$ denotes the duality pairing.

- a) Show that $dL: V \setminus \{0\} \to V^* \setminus \{0\}, x \to d_x L$ is a well-defined local diffeomorphism.
- b) Show that $\langle \mathbf{d}_x L, x \rangle = ||x||^2 = ||\mathbf{d}_x L||^2_*$ for all $x \in V \setminus \{0\}$.
- c) Prove that dL is injective. Hint: If $d_x L = d_y L$, consider $\langle d_x L, tx + (1-t)y \rangle$ for $t \in [0,1]$.
- d) Conclude that dL is a diffeomorphism.
- e) Consider

$$H: V^* \smallsetminus \{0\} \longrightarrow \mathbb{R}$$
$$p \longmapsto \langle p, (\mathrm{d}L)^{-1}(p) \rangle - L((\mathrm{d}L)^{-1}(p)).$$

Prove that $H(p) = \frac{1}{2} ||p||_{*}^{2}$.

Exercise Sheet no. 4

Exercise 1: Symplectic gradient (4 points).

Let (M, ω) be a symplectic manifold, i.e. a pair of a smooth manifold M and a closed non-degenerate 2-form $\omega \in \Omega^2(M)$. Let furthermore $f \in C^{\infty}(M)$ be a smooth function on M.

- a) Show that there exists a unique vector field $X \in \Gamma(TM)$, called sympectic gradient of f, such that $df = \omega(X, -)$.
- b) Let $\phi: M \times \mathbb{R} \supset \mathcal{D} \rightarrow M$, $(p, t) \mapsto \phi_t(p)$ be a local flow of X (cf. Exercise 1 on Sheet 2). Show that ω is preserved by the flow, i.e. $(\phi_t^* \omega)_{|p} = \omega_{|p}$ for $(p, t) \in \mathcal{D}$.

Exercise 2: Canonical symplectic structure (4 points).

Let M be a smooth manifold and $\pi_{T^*M}: T^*M \to M$ be the cotangent bundle of M with its tangent bundle $\pi_{TT^*M}: TT^*M \to T^*M$. For $\alpha \in T_p^*M$ let $d_{\alpha}\pi_{T^*M}: T_{\alpha}T^*M \to T_pM$ be the differential of π_{T^*M} at α . We define $\lambda_{can} \in \Omega^1(T^*M)$ as follows: for $X \in T_{\alpha}T^*M$, with $\alpha \in T^*M$, we set

$$\lambda_{\operatorname{can}}(X) \coloneqq \alpha(\operatorname{d}_{\alpha} \pi_{T^*M}(X)).$$

Denote by $q: M \supset U \rightarrow V \subset \mathbb{R}^n$ be a chart of M.

a) Show that

$$(p,q):\pi_{T^*M}^{-1}(U) \longrightarrow \mathbb{R}^n \times V$$
$$\alpha \longmapsto \left(\alpha \left(\frac{\partial}{\partial q^1}\right), \dots, \alpha \left(\frac{\partial}{\partial q^n}\right), q^1(\pi_{T^*M}(\alpha)), \dots, q^n(\pi_{T^*M}(\alpha))\right)$$

defines a chart of T^*M .

- b) Show that λ_{can} is well-defined and prove that $\lambda_{\text{can}} = \sum_{i=1}^{n} p_i dq^i$ in the chart $(p,q) = (p_1, \ldots, p_n, q^1, \ldots, q^n)$ defined above.
- c) Prove that $\omega_{can} \coloneqq -d\lambda_{can}$ is a symplectic form on T^*M and find its expression in the chart (p,q).

Exercise 3: Another Legendre transformation (4 points).

Let $(V, \langle -, -\rangle)$ be a finite dimensional Euclidean \mathbb{R} -vector space. Consider the function $L: V \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{k} ||x||^k$ for k > 1. Show that $dL: V \setminus \{0\} \to V^* \setminus \{0\}, x \mapsto d_x L$ is a diffeomorphism and calculate $H: V^* \setminus \{0\} \to \mathbb{R}, p \mapsto \langle p, (dL)^{-1}(p) \rangle - L((dL)^{-1}(p))$.

Exercise 4: *Pullback connection* (4 points).

Let $V \to M$ be a smooth vector bundle of rank r with connection ∇ and let $F: N \to M$ be a smooth map. For a point $p \in N$, we choose a chart x of M and a local frame (S_1, \ldots, S_r) of π , both defined on an open neighborhood U around F(p). For a section s of the pullback bundle $F^*V \to N$ and a vector $Y \in T_pN$, we now define

$$\nabla_Y^F s \coloneqq \sum_{j=1}^r \left(\partial_Y s^j + \sum_{i=1}^n \Gamma_{ik}^j(F(p)) X^i s^k(p) \right) S_j(F(p))$$

where $s_{|F^{-1}(U)} = \sum_{j=1}^{r} s^{j}(S_{j} \circ F)$, $d_{p}F(Y) = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}|_{F(p)}$ and $\nabla_{\frac{\partial}{\partial x^{i}}} S_{k} = \sum_{j=1}^{r} \Gamma_{ik}^{j} S_{j}$.

- a) Show that ∇^F yields a well-defined connection on $F^*V \to N$.
- b) Prove that $\nabla_Y^F(s \circ F) = (\nabla_X s) \circ F$ for all $s \in \Gamma(V)$, $X \in \Gamma(TM)$ and $Y \in \Gamma(TN)$ with $dF(Y) = X \circ F$.
- c) In the case V = TM, show that

$$\nabla_{\frac{\partial}{\partial y^i}}^F \mathrm{d}F\left(\frac{\partial}{\partial y^j}\right) - \nabla_{\frac{\partial}{\partial y^j}}^F \mathrm{d}F\left(\frac{\partial}{\partial y^i}\right) = T\left(\mathrm{d}F\left(\frac{\partial}{\partial y^i}\right), \mathrm{d}F\left(\frac{\partial}{\partial y^j}\right)\right),$$

where y is a chart of N and T is the torsion tensor (Exercise 2 on Sheet 3) of the connection ∇ on $TM \rightarrow M$.

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **May 22nd** in the lecture

Exercise Sheet no. 5

Exercise 1: Symplectic orthogonal complement (4 points).

Let (V, ω) be a 2*n*-dimensional symplectic vector space, i. e. a 2*n*-dimensional real vector space V together with an anti-symmetric non-degenerate bilinear form $\omega: V \times V \to \mathbb{R}$. Let $E \subset V$ be a linear subspace. We define the *symplectic orthogonal complement* of E in V as

$$E^{\perp_{\omega}} \coloneqq \{ v \in V \mid \omega(v, w) = 0 \text{ for all } w \in E \}.$$

Show the following:

- a) $E^{\perp \omega}$ is a linear subspace of V.
- b) The following dimension formula holds: $\dim E + \dim E^{\perp \omega} = 2n$.
- c) $(E^{\perp \omega})^{\perp \omega} = E.$

Exercise 2: Isotorpic, Lagrangian and symplectic subspaces (4 points).

Let again (V, ω) be a 2*n*-dimensional symplectic vector space. A linear subspace $E \subset V$ is called *isotropic* if $E \subset E^{\perp_{\omega}}$ and *Lagrangian* if $E = E^{\perp_{\omega}}$. It is *symplectic* if $E \cap E^{\perp_{\omega}} = \{0\}$. Show that the following holds fo any linear subspace $E \subset V$:

- a) E is isotropic if and only if $\omega|_{E \times E} \equiv 0$. In particular, E is Lagrangian if and only if dim E = n and $\omega|_{E \times E} \equiv 0$.
- b) E is symplectic if and only if $E^{\perp \omega}$ is symplectic.
- c) E is symplectic if and only if $E + E^{\perp \omega} = V$.
- d) E is symplectic if and only if the bilinear form $\omega|_{E \times E}$ is non-degenderate.

Exercise 3: Legendre transformation geometrically (4 points).

Let V be a finite-dimensional real vector space, $\Omega \subset V$ a convex open subset and $L: \Omega \to \mathbb{R}$ a smooth convex function. Assume that $dL: \Omega \to \Omega^*, v \mapsto d_v L$ is a diffeomorphism onto its image $\Omega^* \subset V^*$, so that its Legendre transformation $H = \mathbb{L}(L): \Omega^* \to \mathbb{R}$ is well-defined.

a) Show that for all $p \in \Omega^*$

$$H(p) = -\sup\{c \in \mathbb{R} \mid p(v) + c \le L(v) \text{ for all } v \in \Omega\}.$$
(1)

- b) Graphically illustrate the procedure (1) for obtaining the Legendre transformation, in the case dim V = 1.
- c) Show that $\operatorname{Hess}_p H = (\operatorname{Hess}_v L)^{-1}$ for $p = d_v L \in \Omega^*$.

Exercise 4: Conserved quantities arising from Noether's theorem (4 points). For $n \in \mathbb{N}$, a function $E_{\text{pot}}: \mathbb{R}^n \to \mathbb{R}$ and a non-degenerate symmetric matrix $M \in \mathbb{R}^{n \times n}$, we consider the Lagrangian

$$L: T\mathbb{R}^n \longrightarrow \mathbb{R}$$
$$T_q \mathbb{R}^n \ni (q, v) \longmapsto \frac{1}{2} \langle v, Mv \rangle - E_{\text{pot}}(q)$$

a) Assume that n = 3k, $M = \text{diag}(m_1I_3, \ldots, m_kI_3)$ and E_{pot} is translationally symmetric in the following sense:

$$E_{pot}(q_1,\ldots,q_k) = E_{pot}(q_1+a,\ldots,q_k+a)$$

for all $q_1, \ldots, q_k \in \mathbb{R}^3$ and all $a \in \mathbb{R}^3$. Determine the conserved momenta associated to the translational symmetry.

b) Assume that n = 3, $M = mI_3$ and E_{pot} is rotationally symmetric:

$$E_{pot}(q) = E_{pot}(Aq)$$

for all $q \in \mathbb{R}^3$ and all $A \in SO(3)$. Determine the conserved momenta associated to the rotational symmetry. Compare your result to Exercise 1 on Sheet 1.

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **June 5th** in the lecture

Exercise Sheet no. 6

Exercise 1: *Electromagnetic field* (4 points).

The Lagrangian of a charged particle in an electromagnetic field is given by

$$L(x,v,t) \coloneqq \frac{1}{2}m\|v\|^2 + e\langle A(x,t),v\rangle - e\phi(x,t),$$

where $m, e \in \mathbb{R}_{>0}$, $x, v \in \mathbb{R}^3$, $t \in (a, b)$, and both $A: \mathbb{R}^3 \times (a, b) \to \mathbb{R}^3$ and $\phi: \mathbb{R}^3 \times (a, b) \to \mathbb{R}$ are smooth.

- a) Determine the Euler-Lagrange equation associated to L.
- b) Calculate the Hamilton function belonging to L.

Exercise 2: Symplectic maps (4 points).

Let (M_1, ω_1) and (M_2, ω_2) be symplectic manifolds. Denote by $\pi_i: M_1 \times M_2 \to M_i$, i = 1, 2, the canonical projections. Let furthermore $f: M_1 \to M_2$ be a smooth map.

- a) Show that $\omega_W \coloneqq \pi_1^* \omega_1 \pi_2^* \omega_2$ is a symplectic form on $W \coloneqq M_1 \times M_2$.
- b) We consider the graph of f,

$$\operatorname{Graph}(f) \coloneqq \{(x, y) \in W \mid y = f(x)\} \subset W.$$

Show that the tangent space of $\operatorname{Graph}(f)$ in $(x, y) \in \operatorname{Graph}(f)$ is given by

$$T_{(x,y)}\operatorname{Graph}(f) = \{(v, d_x f(v)) \mid v \in T_x M_1\} \subset T_x M_1 \times T_y M_2 = T_{(x,y)} W.$$

Hint: Here, you may use without proof that for a smooth map $f: M \to N$ between smooth manifolds the following holds: The graph of f is a smooth submanifold of $M \times N$ and the map $\mathrm{id} \times f: M \to M \times N$, $x \mapsto (x, f(x))$ is a diffeomorphism onto the graph of f.

c) Conclude that the map $f: M_1 \to M_2$ is symplectic, i.e. $f^*\omega_2 = \omega_1$, if and only if Graph(f) is an isotropic submanifold of W, i.e. $T_{(x,y)}$ Graph(f) is an isotropic subspace of $T_{(x,y)}W$ for all $(x,y) \in$ Graph(f).

Exercise 3: Poisson bracket (4 points).

Let (M, ω) be a symplectic manifold. For two functions $f, g \in C^{\infty}(M)$, we define their *Poisson bracket* by $\{f, g\} \coloneqq \omega(\operatorname{sgrad} f, \operatorname{sgrad} g) \in C^{\infty}(M)$, where sgrad denotes the symplectic gradient defined in Exercise 1 on Sheet 4.

a) Show that for any 2-form $\alpha \in \Omega^2(M)$ and all vector fields $X, Y, Z \in \Gamma(TM)$ the following formula holds:

$$d\alpha(X, Y, Z) = \partial_X \alpha(Y, Z) + \partial_Y \alpha(Z, X) + \partial_Z \alpha(X, Y) - \alpha([Y, Z], X) - \alpha([Z, X], Y) - \alpha([X, Y], Z).$$

Hint: Apply Cartan's formula twice – once for 2-forms and once for 1-forms.

b) Prove that for all $f, g, h \in C^{\infty}(M)$

 $0 = -d\omega(\operatorname{sgrad} f, \operatorname{sgrad} g, \operatorname{sgrad} h) = \{\{f, g\}, h\} + \{\{g, h\}, f\} + \{\{h, f\}, g\}.$

TR

Exercise Sheet no. 7

Exercise 1 (4 points).

Let (V, ω) be a 2*n*-dimensional symplectic vector space and $L \subset V$ be a Lagrangian subspace.

a) Let v_1, \ldots, v_n be a basis of L. Show that there exist $w_1, \ldots, w_n \in V$, s.t. $(v_1, \ldots, v_n, w_1, \ldots, w_n)$ is a symplectic basis of V, i.e.,

$$\omega(v_i, v_j) = \omega(w_i, w_j) = 0$$

$$\omega(v_i, w_j) = \delta_{ij}$$

holds.

- b) Show that for every Lagrangian subspace $L \subset V$, there exists a Lagrangian complement, i. e., $L' \subset V$ a Lagrangian subspace with $L \oplus L' = V$.
- c) We call a map $J: V \to V$ a compatible complex structure for ω if $J^2 = -\operatorname{id}_V$ holds and $g \coloneqq \omega(\cdot, J \cdot)$ is a scalar product on V. Show that if $L \subset V$ is a Lagrangian subspace, then $L' \coloneqq J(L)$ is Lagrangian complement for L.

Exercise 2: *Hamiltonian action* (4 points).

Let (M, ω) be a symplectic manifold. Let $H_1, \ldots, H_k: M \to \mathbb{R}$ be Hamiltonian functions on M with compact support. We assume that

$$\{H_i, H_j\} = 0$$

holds for all $i, j = 1, \ldots, k$.

a) Show the induced flows of the Hamiltonians commute, i.e.,

$$\Phi_t^{H_i} \circ \Phi_t^{H_j} = \Phi_t^{H_j} \circ \Phi_t^{H_i}.$$

b) Show that the following map is well-defined

$$\mathbb{R}^{k} \to \operatorname{Ham}_{c}(M, \omega)$$
$$(t_{1}, \dots, t_{k}) \mapsto \Phi_{t_{1}}^{H_{1}} \circ \dots \circ \Phi_{t_{k}}^{H_{k}},$$

and show that it is a group homomorphism.

Exercise 3 (4 points).

We consider the two-dimensional sphere as a symplectic manifold (S^2, ω_{S^2}) , where the symplectic form is given by

$$\omega_{S^2,p}(v,w) = \langle p, v \times w \rangle_{\mathbb{R}^3}$$

with $p \in S^2$ and $v, w \in T_p S^2 = p^{\perp}$.

- a) For $H_i = x_i$ with i = 1, 2, 3 determine the induced flows $\Phi_t^{H_i}$ for all times $t \in \mathbb{R}$.
- b) Show that any element $A \in SO(3)$ acts as a Hamiltonian diffeomorphism on (S^2, ω_{S^2}) .
- c) Let $x_i: S^2 \to \mathbb{R}$ be the coordinate functions of the sphere for i = 1, 2, 3. Show that the Poisson bracket of these functions satisfies

$$\{x_i, x_j\} = \epsilon_{ijk} x_k,$$

where ϵ_{ijk} is the Levi-Civita symbol. *Hint: Work in spherical coordinates.*

Exercise 4: Harmonic oscillator (4 points). We consider the complex projective space $\mathbb{C}P^n$ and the following maps

$$i: S^{2n+1} \hookrightarrow \mathbb{C}^{n+1}$$
$$\pi: S^{2n+1} \to \mathbb{C}P^n$$

with *i* the inclusion and π the quotient map.

- a) Let $H: \mathbb{C}^{n+1} \to \mathbb{R}, z \mapsto \frac{1}{2} \langle z, z \rangle_{\mathbb{C}^{n+1}}$. Show that sgrad $H_{|z} = -i \cdot z$ holds.
- b) Determine the trajectories of the Hamiltonian system $(\mathbb{C}^{n+1}, \omega_{st}, H)$.
- c) Show that there exists a unique symplectic form on $\mathbb{C}P^n$ called the Fubini-Study form, s.t. $i^*\omega_{st} = \pi^*\omega_{FS}$ holds.

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **June 19th** in the lecture

Exercise Sheet no. 8

Exercise 1: conformal symplectic maps (4 points).

Let (M_1, ω_1) and (M_2, ω_2) be a symplectic manifolds. A smooth map $f: M_1 \to M_2$ is called a *conformal symplectic map* if there exists a smooth function $h: M_1 \to \mathbb{R}$ with

$$f^*\omega_2 = h \cdot \omega_1$$
 .

- a) Show that if the dimension of M_1 is strictly bigger than 2, then the factor h is locally constant.
- b) Find conformal symplectic maps for $M_1 = M_2 = \mathbb{R}^{2n}$ and n > 1, s.t. the conformal factor h is 0 or ± 1 .
- c) Find a conformal symplectic map of $M_1 = M_2 = S^2$ s.t. the conformal factor is non-constant.
- d) Bonus: Let $h \in C^{\infty}(S^2)$ be given. Can you find a conformal symplectic map $f: S^2 \to S^2$ with conformal factor h?

Exercise 2 (4 points). We consider the following map

$$\iota: (B_1(0), \omega_{\text{std}}) \to (\mathbb{C}P^1, \omega_{\text{FS}})$$
$$z \mapsto [z: \sqrt{1 - |z|^2}],$$

where $B_1(0) \subset \mathbb{C}$ is the standard open ball of radius 1 in the complex plane and the induced standard symplectic form of \mathbb{C} . The symplectic form ω_{FS} is the Fubini-Study form introduced on Exercise sheet 7, Ex. 4.

Show that the image of ι is open and dense, and that ι is a symplectomorphism on its image.

Exercise 3: Calibrations (4 points).

Let $G \subset \mathbb{C}$ be open, bounded and non-empty subset of the complex plane with smooth boundary.

a) Show the following inequality for all $X, Y \in \mathbb{R}^{2n}$:

$$\omega_{\rm std}(X,Y)^2 \leq \langle X,X \rangle \langle Y,Y \rangle - \langle X,Y \rangle^2,$$

where ω_{std} is the standard symplectic form on \mathbb{R}^{2n} . Moreover, the equality case in the inequality case holds iff X, Y are linear dependent.

b) Let $F:\overline{G} \to \mathbb{C}^n$ be a smooth map. Show the Wirtinger inequality, i.e.

$$\int_{G} F^* \omega_{\text{std}} \leq \operatorname{area}(F(G)) \coloneqq \int_{G} \sqrt{\langle \partial_x F, \partial_x F \rangle \langle \partial_y F, \partial_y F \rangle - \langle \partial_x F, \partial_y F \rangle^2} \, \mathrm{d}x \, \mathrm{d}y.$$

The equality case holds iff the map F is holomorphic on G.

c) Let $H : \overline{G} \times [0,1] \to \mathbb{C}^n$ be a homotopy of smooth maps which fixes the boundary of G, i.e. $H(t,x) = F_0(x)$ for all $x \in \partial G$ and $t \in [0,1]$, where we write $F_i \coloneqq H(i,\cdot)$ for i = 0, 1. Assume that F_0 is holomorphic on G. Show that:

 $\operatorname{area}(F_1(G)) \ge \operatorname{area}(F_0(G)).$

Hint: One can use that the homotopy H given as above satisfies $\int_G F_0^* \omega_{std} = \int_G F_1^* \omega_{std}$.

Exercise 4: Action-angle coordinates (4 points). Let $E = (E_1, \ldots, E_k) \in \mathbb{R}^k$. We call a Hamiltonian system (M^{2k}, ω, H) integrable if there exist smooth function $H_1 = H, H_2, \ldots, H_k$ on M, s.t.

- i) The Poisson-brackets vanish, i.e. $\{H_i, H_j\} = 0$ for all $i, j \in \{1, \dots, k\}$,
- ii) For all points $x \in N_E \coloneqq \{y \mid H_i(y) = E_i \text{ for all } i \in \{1, \dots, k\}\}$ the symplectic gradients sgrad $H_1, \dots,$ sgrad H_k are linear independent at x.

Assume that N_E is non-empty, compact and connected and let $x_0 \in N_E$.

a) Show that the map

$$F_{x_0}: \mathbb{R}^k \to M, (t_1, \dots, t_k) \mapsto \Phi_{t_1}^{H_1} \circ \dots \circ \Phi_{t_k}^{H_k}(x_0)$$

is well-defined and an immersion. Moreover the image of F is given by $image(F) = N_E$.

- b) The preimage $F_{x_0}^{-1}(x_0)$ is a discrete and closed subgroup of \mathbb{R}^k , which is generated by linear independent elements $v_1 \dots, v_k \in \mathbb{R}^k$.
- c) Construct a diffeomorphism $G: T^k := \mathbb{R}^k / \mathbb{Z}^k \to N_E$, s.t. there exist $w_0, w_1 \in \mathbb{R}^k$ with $\Phi_t^H(x_0) = G([w_0 + tw_1]).$
- d) Let $C := \overline{\{\Phi_t^H(x_0) \mid t \in \mathbb{R}\}}$ be the trajectory of the gradient flow of H. Show that $G^{-1}(C) \subset T^k$ is a closed submanifold. Determine all possible dimensions of C for different Hamiltonian systems (M, ω, H) .

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **June 26th** in the lecture

Exercise Sheet no. 9

Exercise 1 (4 points).

Let (M, ω) be a symplectic manifold and recall that the Poisson bracket is given by $\{f, g\} \coloneqq \omega(\operatorname{sgrad} f, \operatorname{sgrad} g)$. Show that in Darboux coordinates $(U, (q_i, p_i))$, i.e. $\omega_{|U} = \sum_i dp_i \wedge dq_i$ holds, the Poisson bracket $\{f, g\}$ can be written as

$$\sum_{i} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}$$

Exercise 2 (4 points).

We consider the following complex structures on \mathbb{C}^2

$$I_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \qquad I_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad I_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

and define $J \coloneqq \sum_{k=1}^{3} f_k I_k$ for constants $f_k \in \mathbb{R}$ with the condition $f_1^2 + f_2^2 + f_3^2 = 1$.

- a) For which $(f_k)_k$ is the structure J a compatible complex structure for the symplectic form $\omega = -\Im \mathfrak{m}(\langle \cdot, \cdot \rangle_{\mathbb{C}^2})$?
- b) For which $(f_k)_k$ is the structure J a compatible complex structure for the symplectic form $\omega = -\Im \mathfrak{m}(\langle I_1 \cdot , \cdot \rangle_{\mathbb{C}^2})$?
- Bonus: Consider the almost complex structure $J \coloneqq \sum_{k=1}^{3} f_k I_k$ on the symplectic manifold $(\mathbb{C}^2, \omega_{\text{std}})$ with functions $f_k \colon \mathbb{C}^2 \to \mathbb{R}$ which satisfy the constraint $f_1^2 + f_2^2 + f_3^2 = 1$ on \mathbb{C}^2 . Show that J is an integrable almost complex structure iff f_k is constant for all k.

Exercise 3 (4 points).

Show that the space of all complex structure on \mathbb{C}^n , which are compatible with the standard scalar product, is given by the space

Show moreover, that for the case n = 2 this space can be identified with

$$S^2 \sqcup S^2$$
.

Exercise 4 (4 points). Consider the map

$$f: \mathbb{R}^4 \smallsetminus \{0\} \to \mathbb{R}^4 \smallsetminus \{0\}$$
$$x \to \frac{x}{\|x\|^2}$$

and a complex linear structure $J \in \text{End}(\mathbb{R}^4)$.

- a) Show that the pullback $J_f \coloneqq f^*J$ is a complex structure on $\mathbb{R}^4 \setminus \{0\}$. Is there an extension of J_f to all of \mathbb{R}^4 ?
- b) Let ∂_r the radial vector on $\mathbb{R}^4 \setminus \{0\}$. We decompose the space $\alpha : \mathbb{R}^4 \setminus \{0\} \cong S^3 \times \mathbb{R}_{>0}, x \mapsto (\frac{x}{\|x\|}, \|x\|)$ and thus also the tangent bundle as

$$\mathrm{d}\alpha: T_p \mathbb{R}^4 \smallsetminus \{0\} \to T_{p/\|p\|} S^3 \oplus T_{\|p\|} \mathbb{R}_{>0},$$

Show there exists a vector field $X \in \Gamma(TS^3)$, s.t. $(\partial_r, J\partial_r, X, JX)$ is an orthonormal frame of $T\mathbb{R}^4 \setminus \{0\}_{|S^3}$. Show moreover that df can be decomposed as

$$\mathrm{d}\alpha\circ\mathrm{d}f\circ\mathrm{d}\alpha^{-1}=\mathrm{id}_{T_{\varphi_p}S^3}\oplus-\mathrm{id}_{T_1\mathbb{R}_{>0}}$$

for a point $p \in S^3$.

- c) Show that the commutator of the $[J, J_f] = 0$ vanishes. Bonus: Can you generalize the argument for arbitrary linear complex structures $J_1, J_2 \in \text{End}(\mathbb{R}^4)$, which induce different orientations on \mathbb{R}^4 ?
- d) We consider the restricted map J_f on the bundle $\pi^{S^3} \colon \mathbb{R}^4 \times S^3 \to S^3$. Show that for every point $p \in S^3$, the map J_f is constant along a Hopf circle $C_p \coloneqq S^3 \cap \operatorname{span}\{\partial_r, J_f \partial_r\}_p$.
- e) Let $H: S^3 \to \mathbb{C}P^1$ be the quotient map. Let $[p] = L \in \mathbb{C}P^1$ be a complex line and define the following map:

$$\varphi: \mathbb{C}P^1 \to S^2$$
$$[p] \mapsto J(C_p),$$

where $J(C_p)$ is induced complex structure on \mathbb{R}^4 given by $(\partial_r, J_f \partial_r, X, J_f X)$. Show that φ is a diffeomorphism.

University of Regensburg, Summer term 2023 Prof. Dr. Bernd Ammann, Jonathan Glöckle, Julian Seipel Please hand in the exercises until **Monday**, **July 3th** in the lecture

Exercise Sheet no. 10

Exercise 1 (4 points).

Let (M, ω, g, J) be a manifold equipped with a non-degenerated 2-form ω , a Riemannian metric g and an almost complex structure J. Assume that ω and J are compatible with $g = \omega(\cdot, J \cdot)$. Show that if J is g-parallel, i.e. $\nabla^g J = 0$, then J is integrable and ω is parallel and moreover ω is closed.

Exercise 2 (4 points).

Let P_1, \ldots, P_k be homogeneous Polynomials in (n + 1)-variables. Assume that for every point $z \in \mathbb{C}^{n+1} \setminus \{0\}$ with $P_1(z) = \ldots = P_k(z) = 0$ the differentials

$$\mathbf{d}_z P_1, \ldots, \mathbf{d}_z P_k$$

are linear independent. Show that subset

$$\bigcap_{i=1}^k P_i^{-1}(\{0\}) \subset \mathbb{C}P^n$$

is a complex submanifold.

Exercise 3: Segre embedding (4 points). Let V, W be finite dimensional complex vector spaces. The map

$$\iota_{V,W}: \mathbb{P}(V) \times \mathbb{P}(W) \to \mathbb{P}(V \otimes W)$$
$$([v], [w]) \mapsto [v \otimes w]$$

is called the *Segre embedding*, where we denote the projectivization of V by $\mathbb{P}(V) = V \setminus \{0\}/\sim$ with the equivalence relation \sim given by: Let $v, w \in V \setminus \{0\}$ be equivalent $v \sim w$ if there exists $\lambda \in \mathbb{C} \setminus \{0\}$ such that $v = \lambda w$. Show:

- a) Let M be a complex manifold and $N \subset M$ a real submanifold and assume that the integrable complex structure J^M of M preserves the tangent bundle of N, i.e. $J^M(TN) \subset TN$, then N is a complex submanifold of M.
- b) The map ι is an embedding and the image is a complex submanifold. What is the codimension of the image?

Exercise 4 (4 points).

Let M^{2n} be a complex manifold with real dimension 2n. Recall that the complexified tangent bundle $T_{\mathbb{C}}M$ splits into the $\pm i$ -Eigensubbundles of the integrable complex structure J of M, i.e. $T_{\mathbb{C}}M \coloneqq TM \otimes_{\mathbb{R}} \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$. Write $\Lambda^{1,0} = T^{1,0}M$ and $\Lambda^{0,1} = T^{0,1}M$. We define $\Lambda^{p,0} \coloneqq \bigwedge_{i=1}^{p} \Lambda^{1,0}$ and respectively $\Lambda^{0,q} \coloneqq \bigwedge_{i=1}^{q} \Lambda^{0,1}$. We have the map

$$\iota: \Lambda^{p,0} \otimes \Lambda^{0,q} \to \Lambda^k_{\mathbb{C}} \coloneqq \Lambda^k \otimes_{\mathbb{R}} \mathbb{C}$$
$$\alpha \otimes \beta \to \alpha \wedge \beta$$

and set $\Lambda^{p,q} \coloneqq \operatorname{image}(\iota)$.

- a) Show that $T^*M \otimes_{\mathbb{R}} \mathbb{C} \cong (TM \otimes_{\mathbb{R}} \mathbb{C})^*$ holds.
- b) Let $(\varphi: U \subset M \to V \subset \mathbb{C}^n, z_1, \dots, z_n, \overline{z}_1, \dots, \overline{z}_n)$ be a complex chart of M such that $T^*_{\mathbb{C}}M$ is trivialized over U. Show that $dz_1, \dots, dz_n, d\overline{z}_1, \dots, d\overline{z}_n$ is a basis of $T^*_{\mathbb{C}}U$.
- c) Construct an isomorphism $\bigoplus_{p+q=k} \Lambda^{p,q} \cong \Lambda^k_{\mathbb{C}}$.

Exercise Sheet no. 11

Exercise 1 (4 points).

Let G be a smooth manifold and a group. Assume that the group multiplication $m: G \times G \rightarrow G$ is a smooth map. Show that the inversion $\iota: G \rightarrow G$ is also smooth. *Hint: Use the equation* $m(\iota(g), g) = e$ *for all* $g \in G$ *and* e *the neutral element of the group.*

Exercise 2 (4 points).

Let $S_1, S_2 \in \mathbb{R}^{n \times n}$ be symmetric matrices. Define for A and B in the Lie algebra $\mathfrak{so}(n) \coloneqq \{M \in \mathbb{R}^{n \times n} \mid M^T = -M\}$ given by

$$\langle A, B \rangle_{S_1, S_2} \coloneqq \operatorname{tr} \left(S_2 A S_1 B^T \right). \tag{1}$$

- a) Let S_1 and S_2 be positive definit. Show that $\langle \cdot, \cdot \rangle_{S_1,S_2}$ is a scalar product on $\mathfrak{so}(n)$.
- b) Show that for any scalar product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on $\mathfrak{so}(3)$, there exists a unique symmetric matrix $S_3 \in \mathbb{R}^{n \times n}$ with $\langle \cdot, \cdot \rangle_{S_{3,\mathrm{id}}} = \langle\!\langle \cdot, \cdot \rangle\!\rangle$. Is S_3 always positive definit.
- c) Prove the existence of scalar products on $\mathfrak{so}(4)$ which are not of the form as in eq. (1).
- d) Show that every scalar product on $\mathfrak{so}(n)$ is a sum of scalar products as in eq. (1) with positive definit S_1 and S_2 .

Exercise 3 (4 points).

Let G be a Lie group. We consider the adjoint action of G on its Lie algebra:

$$\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g}), g \mapsto (X \mapsto \operatorname{d}_e l_q \circ \operatorname{d}_e r_{q^{-1}}(X))$$

where $l, r: G \to \operatorname{Aut}(G)$ are the left and right multiplication of the group G. Let $\langle \cdot, \cdot \rangle$ be a scalar product on \mathfrak{g} . We say that $\langle \cdot, \cdot \rangle$ is Ad-invariant if $\operatorname{Ad}_g^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$ holds for any $g \in G$. A tensor (field) on G is called bi-invariant, if it is both left- and right-invariant.

- a) Show: a scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} can be extended to a bi-invariant Riemannian metric, if and only if $\langle \cdot, \cdot \rangle$ is Ad-invariant.
- b) Assume that we know $d_e(Ad)(X) = ad_X = [X, \cdot]$ for all $X \in T_eg = \mathfrak{g}$. Show: if $\langle \cdot, \cdot \rangle$ is Ad-invariant, then ad_X is skew-symmetric w.r.t. $\langle \cdot, \cdot \rangle$. Is the converse true as well? Or is it true under additional assumptions?
- c) Let γ be a left-invariant Riemannian metric extending the scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} . Show that ad_X is skew-symmetric w.r.t. $\langle \cdot, \cdot \rangle$, iff the Levi-Civita connection for γ is given by $\nabla_X^{\gamma} Y = \frac{1}{2}[X, Y]$ for all $X, Y \in \mathfrak{g}$. *Hint: Use the Koszul formula.*
- d) Show that the induced Riemannian exponential function and the Lie exponential on G coincide for a biinvariant metric γ .
- e) Bonus exercise: Let G be a connected Lie group with a left invariant metric γ . Show that if the induced Riemannian exponential map and the Lie exponential map coincide, then γ is biinvariant.

Exercise 4: Coadjoint orbit (4 points).

Let G be a Lie group and \mathfrak{g} its Lie algebra and $\xi \in \mathfrak{g}^*$ be an element in the dual. We have the adjoint action $\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ and the induced coadjoint action Ad^* given by $(\operatorname{Ad}_g^*\xi)(X) = \xi(\operatorname{Ad}_g X)$ for $X \in \mathfrak{g}, \xi \in \mathfrak{g}^*$ and $g \in G$. Note that the coadjoint action Ad^* is a right action, i.e. $\operatorname{Ad}_{gh}^* = \operatorname{Ad}_h^* \circ \operatorname{Ad}_g^*$. Similarly we define $\operatorname{ad}_X^* \xi \in \mathfrak{g}$ by

$$(\operatorname{ad}_X^*\xi)(Y) \coloneqq \xi(\operatorname{ad}_X(Y)) = \xi([X,Y]) \quad \forall Y \in \mathfrak{g}.$$

For a fixed covector $\mu \in \mathfrak{g}^*$ we define the *coadjoint orbit* $\mathcal{O}_{\mu} \coloneqq \{\operatorname{Ad}_q^*(\mu) \mid g \in G\}$.

- a) Show that the coadjoint orbit \mathcal{O}_{μ} is submanifold of \mathfrak{g}^* , whose tangent space at ν is $\{\operatorname{ad}_X^* \nu \mid X \in \mathfrak{g}\}$. If helpful, you may use without proof, that any closed subgroup H of a Lie group G is a submanifold, and then G/H carries a unique manifold structure, such that the projection $G \to G/H$ is a submersion. Show that Ad^{*} defines a smooth and transitive action of G on \mathcal{O}_{μ} .
- b) For $\nu \in \mathcal{O}_{\mu}$ and $X, Y \in T_{\nu}\mathcal{O}_{\mu}$ we define

$$\omega_{\nu}: T_{\nu}\mathcal{O}_{\mu} \times T_{\nu}\mathcal{O}_{\mu} \to \mathbb{R}, \quad \omega_{\nu}(\operatorname{ad}_{X}^{*}\nu, \operatorname{ad}_{Y}^{*}\nu) \coloneqq \nu([X, Y]).$$

Show that ω_{ν} is an alternating, non-degenerate bilinear map.

c) Show that this 2-form ω is a *G*-invariant symplectic form on the coadjoint orbit \mathcal{O}_{μ} . In fact, show that ω is closed and that for all $g \in G$ we have $(\operatorname{Ad}_{q}^{*})^{*} \omega = \omega$.