
Seminar on semiclassical analysis

Summer term 2023

Prof. Bernd Ammann
Time and Place of the seminar: Tuesday 14.15 to 16.00, in M009

Number of sessions: 11

Available Dates 18.4., 25.4., 2.5, 9.5., 16.5., 23.5., 16.6., 20.6., 27.6., 4.7.,
25.7.

Special obstructions:

• June 6th: Bernd in Hamburg

• June 16th: Extra session

• July 11th: Bernd in Stockholm

• July 18th: Workshop “Gauge theory with applications to geometry and
low-dimensional topology” in Regensburg (the full week July 17th–21st)

• July 25th: Extra session

Two holidays

Content
In the seminar we mainly follow Zworski’s book [6]. An alternative source is [4].

The goal of the seminar is to understand semiclassical theory. In this context
classical theory is classical mechanics, viewed as a Hamiltonian system on the
symplectic manifold T ∗M . The Hamilton function is e.g.

H(x, ξ) =
1

2
g(ξ, ξ) + V (x)

which has a kinetic term 1
2g(ξ, ξ) and a potential term V . After quantization

this turns into an operator

Hh := −h2∆ + V,

where ∆ is the analyst’s Laplace operator1. In the physical interpretation, h
is Planck’s constant, and motivated by physics, and the mass is normalized to
be 1/2, which often can be achieved by choosing appropriate scales. One would
like to understand whether and how the geometric properties of the quantized
system converge in some sense towards the geometric properties of the classical

1This is minus the Laplace-Beltrami operator of a geometer
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system, when Planck’s constant h converges to 0 or when the energy of the
particle converges to ∞.

More precisely, assuming M to be closed, a solution of the quantized system
is represented by an eigenfunction for Hh, thus we assume that uh,i, i ∈ N are
the pairwise orthogonal, L2-normalized eigenfunctions for Hh to the eigenvalues
λ2h,i ordered by claiming

λh,1 ≤ λh,2 ≤ . . . .

Now let A be a self-adjoint pseudo-differential operator with symbol σA, assu-
ming that σA is integrable as a function on the unit sphere S∗M in T ∗M . We
ask for example whether the quantum expectation value

∫
M

(Auh,i)uh,i conver-
ges to the classical expectation value

∫
S∗M

σA for all i→∞, i ∈ N or for some
subsequence i` → ∞. Such problems are considered under the topic quantum
(unique) ergodicity. The physical motivation is whether the value of the quanti-
zed observable tends to the value of the classical observable in the high energy
limit, however our focus lies on an exact mathematical understanding of this.

Mathematically this leads to very challenging problems, where important
progress was obtained by Nonnenmacher, Arantharaman, Lindenstrauss and
many others, going farther than what we can aim for in the seminar. We refer
[5] for an overview over these modern developments.

Instead the seminar’s goal lies in a good understanding of the foundations.
A first step towards understanding such effects will be achieved by showing

that approximate solutions of the PDE Phuh = 0 concentrate in some sense in
the zero set of the associated symbol for h→ 0. We refer to [6, Theorem 5.3] or
to Talk no. 2 for details. This has consequences for wave dumping.

The subjects of further talks will be explained below.

Prerequistites
We assume that the particpants are familiar with symplectic manifolds and
the quantization procedure that associates operators to symbols. This covers
roughly [6, Chapter 1–4].

Semi-classical analysis for partial differential equa-
tions and eigenfunctions
We treat Chapters 5–9 of [6]. According to Zworski, these chapters are logically
independent, they mainly rely on Chapter 2–4 directly. However, Chapter 7
continues the investigation about eigenvalues and functions of Chapter 6, thus
I doubt that it were easy to treat Chapter 7 without Chapter 6.

Talk no. 1: Semiclassical defect measures. 18.4. +25.4. Raphael Schmid-
peter+2.5 +9.5. Jonathan Glöckle
Explain [6, Chapter 5]. For simplicity the chapter only considers the cases
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M = R2n = T ∗Rn and M = T ∗Tn, where T ∗Tn is a flat n-dimensional to-
rus, although most of the results extend to closed manifolds in general.

Assume that a sequence of L2-bounded functions uh, h ∈ (0, h0] is given.
Further assume that a ∈ C∞c (R2n) = C∞c (T ∗Rn) is a compactly supported
symbol with Weyl quantizations aW (x, hD), again h ∈ (0, h0]. Then Theorem
5.2 in [6] says that a sequence hj → 0 and a measure µ on R2n exist, both not
depending on a, but on the family (uh) such that

〈aw(x, hjD)uhj
, uhj
〉 →

∫
R2n

a(x, ξ) dµ.

Such measures µ are called semiclassical defect measures and are the subject to
the talk.

It is shown that if uh, h > 0 are almost solutions of Phuh = 0, where
Ph is the quantization of an elliptic operator, then the support of any defect
measure is in the zero set of the symbol (Theorem 5.3). This leads to Theorem
5.4 that may be interpreted to say that the semiclassical defect measure (i.e.
the location density of the quantum system) is invariant under the Hamiltonian
flow (i.e. a union of classical orbits). As a conclusion, one shows that under
some dynamical hypothesis, see (5.3.8), the energy of solutions to the damped
wave equation with periodic coefficients on Rn decays exponentially. This is the
statement of Theorem 5.10 which is due to Rauch and Taylor, and it provides
a first classical/quantum correspondence.

Talk no. 2: A harmonic oscillator approach to Eigenvalues and Eigen-
functions. 16.5. +23.5. Christoph Krpoun+16.6. Matthias Ludewig
The subject is [6, Chapter 6]. This chapter starts with a nice treatment of the
harmonic oscillator, at first in 1 dimension, then n dimensions, followed by the
corresponding Weyl asymptotics (Theorem 6.3). This is in fact a special case
of the operator P (h) = −h2∆ + V where V is a suitable potential. This ope-
rator and its limit for h → 0 is the main topic of the chapter. The harmonic
oscillator serves both as a motivating special case (here V (x) = x2), whose
behavior should be generalized to arbitrary operators P (h) as above, but al-
so as an important ingredient in the proof. In fact Theorems 6.2, 6.3 and 6.5
are statements about the harmonic oscillator, while Theorems 6.4, 6.6, 6.7, 6.8
are about general such operators. Theorem 6.6 may be interpreted as follows:
the values of the quantum observables (i.e. spectrum of the operator in Hilbert
space) is contained in the values of the classical variables, after a perturbation
in O(h∞). Thus this is a classical–quantum relation as desired.

In Sections 6.3 and 6.4 the resolvent and Weyl’s law are discussed for P (h).
The content of Section 6.3 consists mainly out of standard facts about elliptic
operators and their resolvents, however presented in a way, that makes the h-
dependence as explicit as possible. The main interest in this part lies in Section
6.4 that proves a version of Weyl’s law which also sheds the h-dependence clearly.
The asymptotics of the number of eigenvalues below Λ ∈ R is associated to the
volume of subenergy subsets

{(x, ξ) ∈ T ∗Rn | |ξ|2 + V (x) ≤ Λ}.
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Talk no. 3: Tunnelling effects and L∞-estimates for quasimodes. 20.6.
+27.6. +4.7. Guadalupe Castillo Solano+Roman Schießl
Here we treat [6, Chapter 7]. Again, we treat the operator P (h) = −h2∆+V . Let
u(h) be an eigenfunction to the eigenvalue E(h). The main results of Section
7.1 (Theorems 7.3 and 7.4) state that in regions which are forbidden for the
classical system (due to energy constraints) the corresponding eigenfunctions
u(h) decay exponentially, i.e. as e−δ/h for some δ > 0. This effect corresponds
to what is taught in quantum mechanics lectures in view of simple examples.
Theorem 7.4 can be seen as a Carleman type estimate. If time admits, one could
briefly mention that such estimates are also used to prove unique continuation
for some elliptic operators, for the Dirac operator see [3, Part I, Section 8] and [2]
for this side aspect. Analogous literature exists for Schrödinger type operators,
see e.g. original work by Aronszajn [1] and Cordes.

In Section 7.2 such exponential decay estimates are extended to tunneling
effects. The remaining part of the chapter heads towards studying quasimodes
which is defined as a family u(h), h ∈ (0, h0] as above. The behaviour for h→∞
is studied and compared to the corresponding classical system. The last section
(Section 7.5) replaces the bounds in terms of Sobolev spaces by bounds in Hölder
spaces Ck,α. It is up to the speaker(s) to decide, whether (s)he wants to treat
this alternative version as well, whether (s)he wants only to sketch some main
ideas, or whether it should be skipped completely.

In Section 7.5 the book presents a self-contained “semiclassical” derivation
of interior Schauder estimates for Laplace type operators.

Propagation of singularities on manifolds in the
semiclassical context
Talk no. 4: More on the symbol calculus. 25.7. Julian Seipel
We discuss [6, Chapter 8].

The first main result of this talk is Beal’s theorem (Theorem 8.3), which
says that an h-dependent linear operator A : S → S ′ is the operator associated
to a symbol, if and only if any N -th iterated commutator of linear functionals
wirth A vanish of order hN .

Section 8.2 treats well-defined symbols of the form g := logm, where M is
a symbol in the previous sense. The corresponding operators may be exponen-
tiated, and the properties of this exponential is the main topic here. This leads
to a generalization of Sobolev spaces in Section 8.3.

In Section 8.4 the wavefront set is introduced, and then one studies the
wavefront set for symbols. Under diffeomorphisms, the wavefront set behaves as
a subset of the cotangent bundle. This leads to microlocality.

—END OF THE SEMINAR—
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As discussed above, so far all Chapters are independent, according to the
author. Now, Chapters 9–12 continue along the lines of Chapter 8. Chapter 9
should be known from the previous semester, but the following talks would be

interesting, if time admits. The chapters 13 and following seem out of reach in
the summer term.

Supplementary Talk no. 1: Symbols, Ψdo’s and Beal’s theorem on
manifolds N.N.

[6, Chapter 9]. This talk adapts the definition of symbols and
pseudodifferential operators to manifolds. We probably already the essential
parts of this chapter in the winter term in sufficient detail. Therefore it might

be wiser to concentrate on other chapters, and to skip this talk.

Talk no. 5: Fourier integral operators. next term (or will be skipped)
N.N.

We treat [6, Chapter 10].
Let pt be a family of real-valued symbols, t ∈ R; and P (t) its Weyl
quantization. A central topic in the chapter is to study solutions of

h

i

d

dt
F (t) + P (t)F (t) = 0 (1)

where F (t) is a family of operators, with F (0) = Id. As P (t) is self-adjoint, the
family F (t) consists of unitaries. If P (t) is the Hamiltonian, this equation is

the time evolution of quantum mechanics in the Schrödinger picture.
Solutions of (1) will be given by an integral formula, using oscillatory

integrals, which provides the WKB approximation, named after Wentzel,
Kramers and Brillouin. For providing such a representation interesting

methods of proof are used, e.g. the Hamilton-Jacobi equation.
This integral formula is then be applied in Section 10.3 in order to obtain
Lp-bounds for quasimodes. So-called Strichartz estimates are a first step in

this direction (Section 10.3), and finally the Lp-bounds are obtained in Section
10.4.

Talk no. 6: Egorov’s theorem and variants. next term (pushed to
later) N.N.

We now discuss [6, Chapter 11]. Let A = aW (x, hD) be a pseudo-differential
operator, representing an observable whose evolution shall be discussed in the
Heisenberg picture. For this we set A(t) := f(t)−1AF (t). From (1) we get the

evolution of A in the Heisenberg picture

d

dt
A(t) =

i

h
[Q(t), A(t)].

Natural question arise: is A(t) again a pseudo-differential operator, more
pricisely of the form A(t) = bWt (x, hD) for some family of symbols bWt ? This is
answered by Egorov’s Theorem (Theorem 11.1). It also shows that up to terms
O(h) the symbol bWt coincides with the pullback of aW by the 1-parameter
family of symplectic diffeomorphisms generated by the Hamiltonian vector
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field ddefined by the symbol of P (t). Thus classical evolution coincides with
quantum evolution (in the Heisenberg picture) up to terms O(h). So far, this is

dealt with in Section 11.1 which is the most important part.
Other sections in this chapter discuss several modifications and extensions of
Egorov’s theorem. Symplectic mappings are “quantized” and a microlocal
version of Egorov’s theorem is given. This is particular strong for linear

symplectic maps. Finally in Section 11.4 Egorov’s Theorem is extended to a
longer time intervall; in physical terms expressed, it is valid up to times

comparable to Ehrenfest time log(h−1).

Supplementary Talk no. 2: More on propagation of singularities,
quasimodes and pseudospectra next term N.N.

If time admits, we then will discuss [6, Chapter 12]. A main result is [6,
Theorem 12.5] which gives a refinement about the evolution of the wavefront

set (already discussed in [6, Theorem 5.4]. This is helpful for a better
understanding of solution of both hyperbolic equations (wave equations) and

parabolic equations (heat equations). A more conceptual framework is
provided by quasimodes and pseudospectra.

More details might be given later, if we have time for this talk.

Seminar-Homepage

https://ammann.app.uni-regensburg.de/lehre/2023s_semiclassic
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