

## Exercise Sheet no. 14

## Exercise 1 (4 points).

Let (M, g) be a Riemannian manifold of dimension  $n \ge 3$ ,  $p \in M$  and  $N \in \mathbb{N}$ . Show that there is a metric  $\overline{g} \in [g]$  for which

$$\operatorname{Sym}(\overline{\nabla}^k \operatorname{ric}^{\overline{g}})|_p = 0$$

holds for all  $k = 0, \ldots N$ .

## Exercise 2 (4 points).

Let (M, g) be a compact Riemannian manifold of dimension  $n \ge 3$ . Assume that  $\operatorname{scal}^g \ge s_0$  for a positive constant  $s_0 > 0$ . Let  $u \in C^{\infty}(M)$  be a minimizer of the Yamabe functional with  $||u||_{L^p} = 1$ . The aim of this exercise is to show that

$$\|u\|_{L^{\infty}} \ge \left(\frac{s_0}{\lambda(\mathbb{S}^n)}\right)^{\frac{n-2}{4}}.$$
(1)

You may proceed in the following steps:

a) Find a lower bound for

$$Q_2^g(v) = \frac{\int_M v Y^g v \operatorname{dvol}}{\|v\|_{L^2}^2}$$

that holds independently of  $v \in H^{1,2}(M) \setminus \{0\}$ .

- b) Estimate  $Q_2^g(u)$  from above in terms of  $||u||_{L^{\infty}}$ .
- c) Conlude (1).

Exercise 3 (4 points).

Let  $n \in \mathbb{N}$  and  $\sigma: S^n \setminus \{e_0\} \to \mathbb{R}^n$  be the stereographic projection. Recall that in Exercise 4 on sheet 10 we constructed a map  $O(n+1,1) \to \operatorname{Conf}(S^n), A \mapsto \tilde{A}$ .

- a) Show that there is an  $A \in O(n+1,1)$  such that  $\sigma \circ \tilde{A} \circ \sigma^{-1}: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$  is the reflection at the unit circle  $x \mapsto \frac{x}{\|x\|^2}$ .
- b) Consider the conformal diffeomorphism  $\Psi_{\alpha} \in \text{Conf}(S^n)$  induced by the dilation map  $\delta_{\alpha}(x) = \alpha x, \ \alpha > 0$ , from Exercise 1 on sheet 11. Show that  $\Psi_{\alpha} = \tilde{A}_t$  for a Lorentz boost

$$A_t = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \\ & \mathrm{id}_{\mathbb{R}^n} \end{pmatrix}$$

and determine t in terms of  $\alpha$ .

Exercise 4 (4 points).

Consider the Riemannian product  $(M, g) = (S^k \times H^l, g_{sph} + g_{hyp})$  for  $k \ge 2$  and  $n = k + l \ge 3$ . Let  $u \in L^p(M)$  be a positive function, which satisfies  $||u||_{L^p} = 1$  and  $Y^g u = \lambda u^{p-1}$  in the weak sense, for  $p = \frac{2n}{n-2}$ .

- a) Construct a positive weak  $L^p$ -solution of  $Y^{\tilde{g}}v = \lambda v^{p-1}$  on  $(S^n \smallsetminus S^{n-k-1}, \tilde{g} = g_{sph})$  with  $\|v\|_{L^p} = 1.$
- b) Show that v extends to a smooth solution on  $(S^n, g_{sph})$  and conclude  $\lambda = n(n-1)\omega_n^{\frac{2}{n}}$ .