Exercise Sheet no. 14

Exercise 1 (4 points).
Let (M, g) be a Riemannian manifold of dimension $n \geq 3, p \in M$ and $N \in \mathbb{N}$. Show that there is a metric $\bar{g} \in[g]$ for which

$$
\operatorname{Sym}\left(\bar{\nabla}^{k} \operatorname{ric}^{\bar{g}}\right)_{\mid p}=0
$$

holds for all $k=0, \ldots N$.
Exercise 2 (4 points).
Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$. Assume that scal ${ }^{g} \geq s_{0}$ for a positive constant $s_{0}>0$. Let $u \in C^{\infty}(M)$ be a minimizer of the Yamabe functional with $\|u\|_{L^{p}}=1$. The aim of this exercise is to show that

$$
\begin{equation*}
\|u\|_{L^{\infty}} \geq\left(\frac{s_{0}}{\lambda\left(\mathbb{S}^{n}\right)}\right)^{\frac{n-2}{4}} \tag{1}
\end{equation*}
$$

You may proceed in the following steps:
a) Find a lower bound for

$$
Q_{2}^{g}(v)=\frac{\int_{M} v Y^{g} v \mathrm{dvol}}{\|v\|_{L^{2}}^{2}}
$$

that holds independently of $v \in H^{1,2}(M) \backslash\{0\}$.
b) Estimate $Q_{2}^{g}(u)$ from above in terms of $\|u\|_{L^{\infty}}$.
c) Conlude (1).

Exercise 3 (4 points).
Let $n \in \mathbb{N}$ and $\sigma: S^{n} \backslash\left\{e_{0}\right\} \rightarrow \mathbb{R}^{n}$ be the stereographic projection. Recall that in Exercise 4 on sheet 10 we constructed a map $O(n+1,1) \rightarrow \operatorname{Conf}\left(S^{n}\right), A \mapsto \tilde{A}$.
a) Show that there is an $A \in O(n+1,1)$ such that $\sigma \circ \tilde{A} \circ \sigma^{-1}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ is the reflection at the unit circle $x \mapsto \frac{x}{\|x\|^{2}}$.
b) Consider the conformal diffeomorphism $\Psi_{\alpha} \in \operatorname{Conf}\left(S^{n}\right)$ induced by the dilation map $\delta_{\alpha}(x)=\alpha x, \alpha>0$, from Exercise 1 on sheet 11. Show that $\Psi_{\alpha}=\tilde{A}_{t}$ for a Lorentz boost

$$
A_{t}=\left(\begin{array}{lll}
\cosh (t) & \sinh (t) & \\
\sinh (t) & \cosh (t) & \\
& & \operatorname{id}_{\mathbb{R}^{n}}
\end{array}\right)
$$

and determine t in terms of α.

Exercise 4 (4 points).
Consider the Riemannian product $(M, g)=\left(S^{k} \times H^{l}, g_{\mathrm{sph}}+g_{\mathrm{hyp}}\right)$ for $k \geq 2$ and $n=k+l \geq 3$. Let $u \in L^{p}(M)$ be a positive function, which satisfies $\|u\|_{L^{p}}=1$ and $Y^{g} u=\lambda u^{p-1}$ in the weak sense, for $p=\frac{2 n}{n-2}$.
a) Construct a positive weak L^{p}-solution of $Y^{\tilde{g}} v=\lambda v^{p-1}$ on $\left(S^{n} \backslash S^{n-k-1}, \tilde{g}=g_{\mathrm{sph}}\right)$ with $\|v\|_{L^{p}}=1$.
b) Show that v extends to a smooth solution on $\left(S^{n}, g_{\mathrm{sph}}\right)$ and conclude $\lambda=n(n-1) \omega_{n}^{\frac{2}{n}}$.

