Exercise Sheet no. 12

Exercise 1 (4 points).
For $n \geq 3$ and $\alpha>0$ consider the function $u_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ defined by $u_{\alpha}(x)=\left(\frac{2 \alpha}{\|x\|^{2}+\alpha^{2}}\right)^{\frac{n-2}{2}}$. Show that $\left\|\nabla u_{\alpha}\right\|^{2}, u_{\alpha} \Delta u_{\alpha} \in L^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\int_{\mathbb{R}^{n}}\left\|\nabla u_{\alpha}\right\|^{2} \mathrm{~d} x=\int_{\mathbb{R}^{n}} u_{\alpha} \Delta u_{\alpha} \mathrm{d} x .
$$

Exercise 2 (4 points).
Let $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be a solution of $a \Delta u=\lambda u^{\frac{n+2}{n-2}}$ for $n \geq 3, a=4 \frac{n-1}{n-2}$ and $\lambda \in \mathbb{R}$. Assume that $u>0$ and $u \in L^{p}\left(\mathbb{R}^{n}\right)$ for $p=\frac{2 n}{n-2}$. Let furthermore $\sigma: S^{n} \backslash\left\{e_{0}\right\} \rightarrow \mathbb{R}^{n}$ be the stereographic projection and $u_{1} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be defined as in Exercise 1.
a) Show that $\frac{u}{u_{1}} \circ \sigma: S^{n} \backslash\left\{e_{0}\right\} \rightarrow \mathbb{R}$ extends to a smooth, positive solution $v \in C^{\infty}\left(S^{n}\right)$ of $Y v=\lambda v^{\frac{n+2}{n-2}}$, where Y is the Yamabe operator of the standard round metric g_{sph}.
b) Calculate the scalar curvature of $\tilde{g}=v^{p-2} g_{\mathrm{sph}}$.
c) Show that \tilde{g} has constant sectional curvature and determine its value.

Hint: Theorem of Obata.
d) Calculate $\lambda\left(\int_{\mathbb{R}^{n}} u^{p} \text { dvol }\right)^{\frac{2}{n}}$.

Hint: Start by showing that $\int_{S^{n}} v^{p} \mathrm{dvol}^{g_{\mathrm{sph}}}=\operatorname{vol}\left(S^{n}, \tilde{g}\right)=r^{n} \omega_{n}$ for a suitable $r>0$ and $\omega_{n}=\operatorname{vol}\left(S^{n}, g_{\mathrm{sph}}\right)$.

Exercise 3 (4 points).
Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$ and $\left(s_{i}\right)_{i \in \mathbb{N}}$ be a sequence in $[2, p)$ for $p=\frac{2 n}{n-2}$. Suppose that $f_{s_{i}} \in L^{s_{i}}(M)$ is a positive solution of $Y f_{s_{i}}=$ $\lambda_{s_{i}}(M, g) f_{s_{i}}^{s_{i}-1}$ for each $i \in \mathbb{N}$, normalized by $\left\|f_{s_{i}}\right\|_{L^{s_{i}}}=1$. Show that if $\left\|f_{s_{i}}\right\|_{L^{\infty}} \rightarrow \infty$, then $s_{i} \rightarrow p$ for $i \rightarrow \infty$.
Hint: If s_{i} subconverges to $s_{\infty}<p$, find an interval $s_{\infty} \in\left(r_{0}, s_{0}\right)$ with $r_{0}>\frac{n}{2}\left(s_{0}-2\right)$. Then make use of Theorem 3.13 (iii) from the lecture.

Exercise 4 (4 points).
We consider the embedding $S^{k} \subset S^{n}$ for $0 \leq k<n$ induced by restricting $\mathbb{R}^{k+1} \times\{0\} \subset \mathbb{R}^{n+1}$ to the unit sphere. Let $s: S^{n} \rightarrow \mathbb{R}$ be the (intrinsic) distance function from S^{k}.
a) Show that $\operatorname{im}(s)=\left[0, \frac{\pi}{2}\right]$ with $s^{-1}(0)=S^{k}$ and $\left(S^{k}\right)^{\perp}:=s^{-1}\left(\frac{\pi}{2}\right) \cong S^{n-k-1}$.
b) Construct a diffeomorphism $\Phi: S^{k} \times\left(0, \frac{\pi}{2}\right) \times S^{n-k-1} \rightarrow S^{n} \backslash\left(S^{k} \cup\left(S^{k}\right)^{\perp}\right)$ such that $\operatorname{pr}_{\left(0, \frac{\pi}{2}\right)} \circ \Phi^{-1}=s$ and

$$
\Phi^{*} g_{S^{n}}=(\cos s)^{2} g_{S^{k}}+\mathrm{d} s^{2}+(\sin s)^{2} g_{S^{n-k-1}} .
$$

c) Show that precomposition with $(0, \infty) \rightarrow\left(0, \frac{\pi}{2}\right), t \mapsto \arcsin \left((\cosh t)^{-1}\right.$ yields a diffeomorphism Ψ such that

$$
\Psi^{*}\left((\sin s)^{-2} g_{S^{n}}\right)=(\sinh t)^{2} g_{S^{k}}+\mathrm{d} t^{2}+g_{S^{n-k-1}} .
$$

d) Conclude that $\left(S^{n} \backslash\left(S^{k} \cup\left(S^{k}\right)^{\perp}\right),(\sin s)^{-2} g_{S^{n}}\right)$ is isometric to $\left(\left(H^{k+1} \backslash\{p\}\right) \times S^{n-k-1}, g_{H^{k+1}+}\right.$ $\left.g_{S^{n-k-1}}\right)$, where $\left(H^{k+1}, g_{H^{k+1}}\right)$ is standard hyperbolic $(k+1)$-space and $p \in H^{k+1}$.
e) Prove that this isometry extends to $S^{n} \backslash S^{k}$ and $H^{k+1} \times S^{n-k-1}$, showing that ($S^{n} \backslash$ $\left.S^{k}, g_{S^{n}}\right)$ and ($\left.H^{k+1} \times S^{n-k-1}, g_{H^{k+1}}+g_{S^{n-k-1}}\right)$ are conformal.

