Exercise Sheet no. 11

Exercise 1 (4 points).
Consider the stereographic projections $\sigma: S^{n} \backslash\left\{e_{0}\right\} \rightarrow \mathbb{R}^{n}$ and $\sigma^{\prime}: S^{n} \backslash\left\{-e_{0}\right\} \rightarrow \mathbb{R}^{n}$ as well as the dilatation and translation maps

$$
\begin{array}{rlrl}
\delta_{\alpha}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} & F_{v}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
x & \mapsto \alpha x & x & \mapsto x+v
\end{array}
$$

for $\alpha>0$ and $v \in \mathbb{R}^{n}$.
a) Verify that $\sigma^{\prime} \circ \sigma^{-1}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ is the reflection at the unit sphere, i.e. $x \mapsto \frac{x}{\|x\|^{2}}$.
b) Show that $\sigma^{-1} \circ \delta_{\alpha} \circ \sigma$ extends to a smooth diffeomorphism Ψ_{α} on S^{n} with $\sigma^{\prime} \circ \Psi_{\alpha} \circ$ $\left(\sigma^{\prime}\right)^{-1}=\delta_{\alpha^{-1}}$ and calculate $\mathrm{d}_{e_{0}} \Psi_{\alpha}$.
c) Show that $\sigma^{-1} \circ F_{v} \circ \sigma$ extends to a smooth diffeomorphism Φ_{v} on S^{n} and calculate $\mathrm{d}_{e_{0}} \Phi_{v}$.

Exercise 2 (4 points).
Let $n \geq 3, \sigma: S^{n} \backslash\left\{e_{0}\right\} \rightarrow \mathbb{R}^{n}$ be the stereographic projection and $u_{1} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be the function given by

$$
u_{1}(x)=\left(\frac{2}{\|x\|^{2}+1}\right)^{\frac{n-2}{2}}
$$

For a function $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$, we set $v:=\frac{u}{u_{1}} \circ \sigma \in C^{\infty}\left(S^{n} \backslash\left\{e_{0}\right\}\right)$. Assume that u is positive with

$$
\int_{\mathbb{R}^{n}} u^{\frac{2 n}{n-2}} \mathrm{dvol}<\infty \quad \text { and } \quad 4 \frac{n-1}{n-2} \Delta u=\lambda u^{\frac{n+2}{n-2}}
$$

for some $\lambda \in \mathbb{R}$. Show that on $S^{n} \backslash\left\{e_{0}\right\}$, the function v is in L^{p} for $p=\frac{2 n}{n-2}$ and $Y v=\lambda v^{\frac{n+2}{n-2}}$, where Y is the Yamabe operator for the standard round metric.

Exercise 3 (4 points).
Let v be a weak L^{p}-solution of $Y v=\lambda v^{\frac{n+2}{n-2}}$ on $S^{n} \backslash\left\{e_{0}\right\}$, where $n \geq 3, p=\frac{2 n}{n-2}, \lambda \in \mathbb{R}$ and Y is the Yamabe operator of the standard round metric. Assuming $v \geq 0$, show the following:
a) v extends to a weak L^{p}-solution of $Y v=\lambda v^{\frac{n+2}{n-2}}$ on S^{n}.
b) $v \in L^{r}\left(S^{n}\right)$ for some $r>p$.
c) v is represented by a smooth function and $Y v=\lambda v^{\frac{n+2}{n-2}}$ holds classically on S^{n}.

Hint: Try to find an appropriate statement for each step in the lecture notes. You may also use the Lemma by Trudinger in Section 1.10 not treated so far.

Exercise 4 (4 points).
Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$ with the property that the sign (considered as element of $\{-1,0,1\}$) of its scalar curvature is constant. Assume that $f \in C^{\infty}(M)$ is a positive function with $Y_{g}(f)=\lambda f^{\frac{n+2}{n-2}}$ for some $\lambda \in \mathbb{R}$, where $Y_{g}=4 \frac{n-1}{n-2} \Delta_{g}+$ scal g is the Yamabe operator.
a) Show that $\operatorname{sgn}($ scal $)=\operatorname{sgn}(\lambda)$.

Hint: Look at the equation in a global maximum and minimum of f on M.
b) Assuming that M is connected, scal is constant and $\lambda \leq 0$, show that f is constant.

