## Exercise Sheet no. 10

Exercise 1 (4 points).
Minkowski space $\left.\left(\mathbb{R}^{n, 1},\langle-,-\rangle\right\rangle\right)$ is the vector space $\mathbb{R}^{n+1}$ with the inner product $\langle\langle X, Y\rangle\rangle=$ $-X_{0} Y_{0}+X_{1} Y_{1}+\cdots+X_{n} Y_{n}$ for $X=\left(X_{0}, X_{1}, \ldots, X_{n}\right), Y=\left(Y_{0}, Y_{1}, \ldots, Y_{n}\right) \in \mathbb{R}^{n+1}$. Consider the submanifold $H:=\left\{X \in \mathbb{R}_{>0} \times \mathbb{R}^{n} \mid\langle X, X\rangle=-1\right\} \subset \mathbb{R}^{n, 1}$ with its induced symmetric bilinear form $g$.
a) Show that $g$ is a Riemannian metric on $H$ and that $(H, g)$ has constant sectional curvature $K=-1$.
b) Prove that the stereographic projection

$$
\begin{aligned}
\Phi: H & \longrightarrow B_{1}(0) \subset \mathbb{R}^{n} \\
\mathbb{R} \times \mathbb{R}^{n} \ni\left(x_{0}, \vec{x}\right) & \longmapsto \frac{\vec{x}}{x_{0}+1}
\end{aligned}
$$

defines an isometry between $(H, g)$ and $\left(B_{1}(0), g_{\text {hyp }}\right)$, where $g_{\text {hyp }}(y)=\frac{4}{\left(1-\|y\|^{2}\right)^{2}} g_{\text {eucl }}(y)$ for $y \in B_{1}(0)$ and the euclidean metric $g_{\text {eucl }}$ on $B_{1}(0)$.

Exercise 2 (4 points).
Let $\left(M, g_{\kappa}\right)$ be a Riemannian manifold of constant sectional curvature $\kappa \in \mathbb{R}$. Consider the exponential map $\exp _{p}: T_{p} M \supset V \rightarrow U \subset M$ in some point $p \in M$, with $V$ star-shaped with respect to 0 . After identifying $S^{n-1}$ with the unit sphere in $T_{p} M$, we define polar coordinates by $\Phi: \mathbb{R} \times S^{n-1} \supset W \stackrel{\cong}{\rightrightarrows} V \backslash\{0\},(r, X) \mapsto r X$. Show that $\left(\exp _{p} \circ \Phi\right)^{*} g_{\kappa}=$ $\mathrm{d} r^{2}+s_{\kappa}(r)^{2} g_{\text {std }}$, with $g_{\text {std }}$ being the standard round metric on $S^{n-1}$, and determine the function $s_{\kappa}$.
Hint: Start by expressing the Jacobi field $J_{W}(t)=\frac{\mathrm{d}}{\mathrm{d} s \mid s=0} \exp _{p}(t(X+s W)), X \perp W$, along $c(t)=\exp _{p}(t X)$ in an orthonormal frame $E_{1}, \ldots, E_{n}$ that is parallel along $c$.

Exercise 3 (4 points).
Let ( $M, g_{\kappa}$ ) and ( $\tilde{M}, \tilde{g}_{\tilde{\kappa}}$ ) be Riemannian manifolds of constant sectional curvature $\kappa$ and $\tilde{\kappa} \in \mathbb{R}$, respectively. For $p \in M$ and $\tilde{p} \in \tilde{M}$, show that there are reals $r, \tilde{r}>0$ and a conformal diffeomorphism $\Phi: \tilde{M} \supset B_{r}(p) \rightarrow B_{\tilde{r}}(\tilde{p}) \subset \tilde{M}$. Is there a relation between $r$ and $\tilde{r}$ ?

Exercise 4 (4 points).
Let $\mathcal{L}:=\left\{X \in \mathbb{R}^{n+1,1} \backslash\{0\} \mid\langle X X, X\rangle=0\right\}$ be the set of light-like vectors in Minkowski space.
a) Show that $\mathcal{L}$ is a smooth (but not semi-Riemannian!) submanifold of $\mathbb{R}^{n+1,1}$ and $\iota: S^{n} \rightarrow \mathcal{L}, x \mapsto(1, x)$ is an embedding of smooth manifolds ${ }^{1}$. Prove furthermore that $S^{n} \xrightarrow{\iota} \mathcal{L} \rightarrow \mathcal{L} / \mathbb{R}^{*}$ is a bijection, giving rise to a smooth map $\pi: \mathcal{L} \rightarrow \mathcal{L} / \mathbb{R}^{*} \cong S^{n}$.
b) Let $x \in \mathcal{L}$. A space-like vector $v \in T_{x} \mathcal{L}$ defines an oriented plane $E_{v}=\operatorname{span}(x, v)$ in $\mathbb{R}^{n+1,1}\left((x, v)\right.$ shall be positively oriented in $E_{v}$, say $)$. Given two oriented planes $E$

[^0]and $F$ such that $E=E_{v}$ and $F=E_{w}$ for some space-like $v, w \in T_{x} \mathcal{L}$, show that their enclosed angle
$$
\angle(E, F)=\arccos \frac{\langle v, w\rangle}{\sqrt{\langle v, v\rangle\rangle} \sqrt{\langle w, w\rangle}} \in[0, \pi]
$$
is well-defined (i. e. independent of the choices of $v$ and $w$ ). Verify additionally that $\angle(E, F)=\angle\left(\mathrm{d}_{x} \pi(v), \mathrm{d}_{x} \pi(w)\right)$, where the latter is the angle between two vectors on the standard sphere $\left(S^{n}, g\right)$.
c) Let $A \in O(n+1,1)$. Show that $A$ restricts to a diffeomorphism $A: \mathcal{L} \rightarrow \mathcal{L}$, that there is a unique map $\widetilde{A}$ making the diagram

commute and that $\widetilde{A}$ is a conformal diffeomorphism.


[^0]:    ${ }^{1}$ including being a homeomorphism onto its image

